Suppr超能文献

使用多流二维卷积网络的深度学习与多传感器融合用于胶质瘤分类

Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks.

作者信息

Ge Chenjie, Gu Irene Yu-Hua, Jakola Asgeir Store, Yang Jie

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5894-5897. doi: 10.1109/EMBC.2018.8513556.

Abstract

This paper addresses issues of brain tumor, glioma, grading from multi-sensor images. Different types of scanners (or sensors) like enhanced T1-MRI, T2-MRI and FLAIR, show different contrast and are sensitive to different brain tissues and fluid regions. Most existing works use 3D brain images from single sensor. In this paper, we propose a novel multistream deep Convolutional Neural Network (CNN) architecture that extracts and fuses the features from multiple sensors for glioma tumor grading/subcategory grading. The main contributions of the paper are: (a) propose a novel multistream deep CNN architecture for glioma grading; (b) apply sensor fusion from T1-MRI, T2-MRI and/or FLAIR for enhancing performance through feature aggregation; (c) mitigate overfitting by using 2D brain image slices in combination with 2D image augmentation. Two datasets were used for our experiments, one for classifying low/high grade gliomas, another for classifying glioma with/without 1p19q codeletion. Experiments using the proposed scheme have shown good results (with test accuracy of 90.87% for former case, and 89.39 % for the latter case). Comparisons with several existing methods have provided further support to the proposed scheme. keywords: brain tumor classification, glioma, 1p19q codeletion, glioma grading, deep learning, multi-stream convolutional neural networks, sensor fusion, T1-MR image, T2-MR image, FLAIR.

摘要

本文探讨了基于多传感器图像的脑肿瘤、胶质瘤分级问题。不同类型的扫描仪(或传感器),如增强T1加权磁共振成像(T1-MRI)、T2加权磁共振成像(T2-MRI)和液体衰减反转恢复序列(FLAIR),显示出不同的对比度,并且对不同的脑组织和液体区域敏感。大多数现有工作使用来自单个传感器的3D脑图像。在本文中,我们提出了一种新颖的多流深度卷积神经网络(CNN)架构,该架构从多个传感器中提取并融合特征,用于胶质瘤肿瘤分级/亚类分级。本文的主要贡献包括:(a)提出一种用于胶质瘤分级的新颖多流深度CNN架构;(b)应用来自T1-MRI、T2-MRI和/或FLAIR的传感器融合,通过特征聚合提高性能;(c)通过结合使用2D脑图像切片和2D图像增强来减轻过拟合。我们的实验使用了两个数据集,一个用于对低/高级别胶质瘤进行分类,另一个用于对有/无1p19q共缺失的胶质瘤进行分类。使用所提出方案的实验取得了良好的结果(前一种情况的测试准确率为90.87%,后一种情况为89.39%)。与几种现有方法的比较为所提出的方案提供了进一步的支持。关键词:脑肿瘤分类、胶质瘤、1p19q共缺失、胶质瘤分级、深度学习、多流卷积神经网络、传感器融合、T1-MR图像、T2-MR图像、FLAIR

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验