Suppr超能文献

基于深度多尺度 3D 卷积神经网络(CNN)的 MRI 脑肿瘤胶质瘤分类。

Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification.

机构信息

Advanced Technologies for Medecine and Signal (ATMS), Sfax university, ENIS, Route de la Soukra km 4, 3038, Sfax, Tunisia.

National Engineering School of Gabes, Gabes university, Avenue Omar Ibn El Khattab, Zrig Gabes, 6029, Gabes, Tunisia.

出版信息

J Digit Imaging. 2020 Aug;33(4):903-915. doi: 10.1007/s10278-020-00347-9.

Abstract

Accurate and fully automatic brain tumor grading from volumetric 3D magnetic resonance imaging (MRI) is an essential procedure in the field of medical imaging analysis for full assistance of neuroradiology during clinical diagnosis. We propose, in this paper, an efficient and fully automatic deep multi-scale three-dimensional convolutional neural network (3D CNN) architecture for glioma brain tumor classification into low-grade gliomas (LGG) and high-grade gliomas (HGG) using the whole volumetric T1-Gado MRI sequence. Based on a 3D convolutional layer and a deep network, via small kernels, the proposed architecture has the potential to merge both the local and global contextual information with reduced weights. To overcome the data heterogeneity, we proposed a preprocessing technique based on intensity normalization and adaptive contrast enhancement of MRI data. Furthermore, for an effective training of such a deep 3D network, we used a data augmentation technique. The paper studied the impact of the proposed preprocessing and data augmentation on classification accuracy.Quantitative evaluations, over the well-known benchmark (Brats-2018), attest that the proposed architecture generates the most discriminative feature map to distinguish between LG and HG gliomas compared with 2D CNN variant. The proposed approach offers promising results outperforming the recently supervised and unsupervised state-of-the-art approaches by achieving an overall accuracy of 96.49% using the validation dataset. The obtained experimental results confirm that adequate MRI's preprocessing and data augmentation could lead to an accurate classification when exploiting CNN-based approaches.

摘要

从容积 3D 磁共振成像(MRI)准确且全自动的脑肿瘤分级是医学影像分析领域的一个重要程序,可在临床诊断期间为神经放射学提供全面帮助。本文提出了一种高效且全自动的深度多尺度三维卷积神经网络(3D CNN)架构,用于使用整个容积 T1-Gado MRI 序列对脑胶质瘤进行低级别胶质瘤(LGG)和高级别胶质瘤(HGG)分类。基于 3D 卷积层和深度网络,通过小核,所提出的架构具有融合局部和全局上下文信息的潜力,同时减少权重。为了克服数据异质性,我们提出了一种基于 MRI 数据强度归一化和自适应对比度增强的预处理技术。此外,为了有效训练这种深度 3D 网络,我们使用了数据增强技术。本文研究了所提出的预处理和数据增强对分类准确性的影响。在著名的基准(Brats-2018)上进行的定量评估证明,与 2D CNN 变体相比,所提出的架构生成的最具鉴别力的特征图可区分 LG 和 HG 脑胶质瘤。所提出的方法提供了有希望的结果,在使用验证数据集时,整体准确性达到 96.49%,优于最近的监督和无监督的最先进方法。所获得的实验结果证实,在利用基于 CNN 的方法时,适当的 MRI 预处理和数据增强可以实现准确的分类。

相似文献

1
Deep Multi-Scale 3D Convolutional Neural Network (CNN) for MRI Gliomas Brain Tumor Classification.
J Digit Imaging. 2020 Aug;33(4):903-915. doi: 10.1007/s10278-020-00347-9.
2
Automated glioma grading on conventional MRI images using deep convolutional neural networks.
Med Phys. 2020 Jul;47(7):3044-3053. doi: 10.1002/mp.14168. Epub 2020 May 11.
3
Brain tumor segmentation using holistically nested neural networks in MRI images.
Med Phys. 2017 Oct;44(10):5234-5243. doi: 10.1002/mp.12481. Epub 2017 Aug 20.
4
Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5894-5897. doi: 10.1109/EMBC.2018.8513556.
5
A comparative study for glioma classification using deep convolutional neural networks.
Math Biosci Eng. 2021 Jan 29;18(2):1550-1572. doi: 10.3934/mbe.2021080.
6
Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.
J Healthc Eng. 2018 Mar 19;2018:4940593. doi: 10.1155/2018/4940593. eCollection 2018.
7
Improvement of Automatic Glioma Brain Tumor Detection Using Deep Convolutional Neural Networks.
J Comput Biol. 2022 Jun;29(6):530-544. doi: 10.1089/cmb.2021.0280. Epub 2022 Mar 1.
8
fMRI volume classification using a 3D convolutional neural network robust to shifted and scaled neuronal activations.
Neuroimage. 2020 Dec;223:117328. doi: 10.1016/j.neuroimage.2020.117328. Epub 2020 Sep 5.
9
MRI-based brain tumor detection using convolutional deep learning methods and chosen machine learning techniques.
BMC Med Inform Decis Mak. 2023 Jan 23;23(1):16. doi: 10.1186/s12911-023-02114-6.
10
An Efficient Multi-Scale Convolutional Neural Network Based Multi-Class Brain MRI Classification for SaMD.
Tomography. 2022 Jul 26;8(4):1905-1927. doi: 10.3390/tomography8040161.

引用本文的文献

2
MultiCubeNet: Multitask deep learning for molecular subtyping and prognostic prediction in gliomas.
Neurooncol Adv. 2025 Apr 28;7(1):vdaf079. doi: 10.1093/noajnl/vdaf079. eCollection 2025 Jan-Dec.
5
MAF-Net: A multimodal data fusion approach for human action recognition.
PLoS One. 2025 Apr 9;20(4):e0319656. doi: 10.1371/journal.pone.0319656. eCollection 2025.
6
Artificial Intelligence for Neuroimaging in Pediatric Cancer.
Cancers (Basel). 2025 Feb 12;17(4):622. doi: 10.3390/cancers17040622.
8
Brain CT image classification based on mask RCNN and attention mechanism.
Sci Rep. 2024 Nov 26;14(1):29300. doi: 10.1038/s41598-024-78566-1.
10
Brain tumor classification using fine-tuned transfer learning models on magnetic resonance imaging (MRI) images.
Digit Health. 2024 Oct 7;10:20552076241286140. doi: 10.1177/20552076241286140. eCollection 2024 Jan-Dec.

本文引用的文献

1
Denoising and contrast-enhancement approach of magnetic resonance imaging glioblastoma brain tumors.
J Med Imaging (Bellingham). 2019 Oct;6(4):044002. doi: 10.1117/1.JMI.6.4.044002. Epub 2019 Oct 15.
2
Brain tumor classification using deep CNN features via transfer learning.
Comput Biol Med. 2019 Aug;111:103345. doi: 10.1016/j.compbiomed.2019.103345. Epub 2019 Jun 29.
3
Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN.
Biomed Eng Online. 2018 Dec 4;17(1):181. doi: 10.1186/s12938-018-0604-3.
4
Classification of the glioma grading using radiomics analysis.
PeerJ. 2018 Nov 22;6:e5982. doi: 10.7717/peerj.5982. eCollection 2018.
5
Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions.
J Digit Imaging. 2017 Aug;30(4):449-459. doi: 10.1007/s10278-017-9983-4.
6
Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction.
J Magn Reson Imaging. 2017 Jul;46(1):115-123. doi: 10.1002/jmri.25497. Epub 2016 Sep 28.
7
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验