Advanced Technologies for Medecine and Signal (ATMS), Sfax university, ENIS, Route de la Soukra km 4, 3038, Sfax, Tunisia.
National Engineering School of Gabes, Gabes university, Avenue Omar Ibn El Khattab, Zrig Gabes, 6029, Gabes, Tunisia.
J Digit Imaging. 2020 Aug;33(4):903-915. doi: 10.1007/s10278-020-00347-9.
Accurate and fully automatic brain tumor grading from volumetric 3D magnetic resonance imaging (MRI) is an essential procedure in the field of medical imaging analysis for full assistance of neuroradiology during clinical diagnosis. We propose, in this paper, an efficient and fully automatic deep multi-scale three-dimensional convolutional neural network (3D CNN) architecture for glioma brain tumor classification into low-grade gliomas (LGG) and high-grade gliomas (HGG) using the whole volumetric T1-Gado MRI sequence. Based on a 3D convolutional layer and a deep network, via small kernels, the proposed architecture has the potential to merge both the local and global contextual information with reduced weights. To overcome the data heterogeneity, we proposed a preprocessing technique based on intensity normalization and adaptive contrast enhancement of MRI data. Furthermore, for an effective training of such a deep 3D network, we used a data augmentation technique. The paper studied the impact of the proposed preprocessing and data augmentation on classification accuracy.Quantitative evaluations, over the well-known benchmark (Brats-2018), attest that the proposed architecture generates the most discriminative feature map to distinguish between LG and HG gliomas compared with 2D CNN variant. The proposed approach offers promising results outperforming the recently supervised and unsupervised state-of-the-art approaches by achieving an overall accuracy of 96.49% using the validation dataset. The obtained experimental results confirm that adequate MRI's preprocessing and data augmentation could lead to an accurate classification when exploiting CNN-based approaches.
从容积 3D 磁共振成像(MRI)准确且全自动的脑肿瘤分级是医学影像分析领域的一个重要程序,可在临床诊断期间为神经放射学提供全面帮助。本文提出了一种高效且全自动的深度多尺度三维卷积神经网络(3D CNN)架构,用于使用整个容积 T1-Gado MRI 序列对脑胶质瘤进行低级别胶质瘤(LGG)和高级别胶质瘤(HGG)分类。基于 3D 卷积层和深度网络,通过小核,所提出的架构具有融合局部和全局上下文信息的潜力,同时减少权重。为了克服数据异质性,我们提出了一种基于 MRI 数据强度归一化和自适应对比度增强的预处理技术。此外,为了有效训练这种深度 3D 网络,我们使用了数据增强技术。本文研究了所提出的预处理和数据增强对分类准确性的影响。在著名的基准(Brats-2018)上进行的定量评估证明,与 2D CNN 变体相比,所提出的架构生成的最具鉴别力的特征图可区分 LG 和 HG 脑胶质瘤。所提出的方法提供了有希望的结果,在使用验证数据集时,整体准确性达到 96.49%,优于最近的监督和无监督的最先进方法。所获得的实验结果证实,在利用基于 CNN 的方法时,适当的 MRI 预处理和数据增强可以实现准确的分类。