Papini Gabriele B, Fonseca Pedro, Margarito Jenny, van Gilst Merel M, Overeem Sebastiaan, Bergmans Jan W M, Vullings Rik
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6022-6025. doi: 10.1109/EMBC.2018.8513660.
Obstructive sleep apnea syndrome (OSAS) is a sleep disorder that affects a large part of the population and the development of algorithms using cardiovascular features for OSAS monitoring has been an extensively researched topic in the last two decades. Several studies regarding automatic apneic event classification using ECG derived features are based on the public Apnea-ECG database available on PhysioNet. Although this database is an excellent starting point for apnea topic investigations, in our study we show that algorithms for apneic-epochs classification that are successfully trained on this database (sensitivity < 85%, false detection rate <20%) perform poorly (sensitivity\textit<55%, false detection rate < 40%) in other databases which include patients with a broader spectrum of apneic events and sleep disorders. The reduced performance can be related to the complexity of breathing events, the increased number of non-breathing related sleep events, and the presence of non-OSAS sleep pathologies.
阻塞性睡眠呼吸暂停综合征(OSAS)是一种影响很大一部分人群的睡眠障碍,在过去二十年中,利用心血管特征进行OSAS监测的算法开发一直是一个广泛研究的课题。几项关于使用心电图衍生特征进行自动呼吸暂停事件分类的研究是基于PhysioNet上可用的公共呼吸暂停-心电图数据库。尽管该数据库是呼吸暂停课题研究的一个很好的起点,但在我们的研究中,我们表明,在该数据库上成功训练的呼吸暂停时段分类算法(灵敏度<85%,误检率<20%)在其他数据库中表现不佳(灵敏度<55%,误检率<40%),这些数据库包括具有更广泛呼吸暂停事件和睡眠障碍的患者。性能下降可能与呼吸事件的复杂性、非呼吸相关睡眠事件数量的增加以及非OSAS睡眠病理的存在有关。