Hu Eric Y, Yu Gene, Song Dong, Jean-Marie Bouteiller C, Theodore Berger W
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6129-6132. doi: 10.1109/EMBC.2018.8513616.
Synapses are key components in signal transmission in the brain, often exhibiting complex non-linear dynamics. Yet, they are often crudely modelled as linear exponential equations in large-scale neuron network simulations. Mechanistic models that use detailed channel receptor kinetics more closely replicate the nonlinear dynamics observed at synapses, but use of such models are generally restricted to small scale simulations due to their computational complexity. Previously, we have developed an ``input-output'' (IO) synapse model using the Volterra functional series to estimate nonlinear synaptic dynamics. Here, we present an improvement on the IO synapse model using the extbf{Laguerre-Volterra network (LVN) framework. We demonstrate that utilization of the LVN framework helps reduce memory requirements and improves the simulation speed in comparison to the previous iteration of the IO synapse model. We present results that demonstrate the accuracy, memory efficiency, and speed of the LVN model that can be extended to simulations with large numbers of synapses. Our efforts enable complex nonlinear synaptic dynamics to be modelled in large-scale network models, allowing us to explore how synaptic activity may influence network behavior and affects memory, learning, and neurodegenerative diseases.
突触是大脑信号传递的关键组成部分,常常表现出复杂的非线性动力学。然而,在大规模神经元网络模拟中,它们通常被粗略地建模为线性指数方程。使用详细通道受体动力学的机制模型能更紧密地复制在突触处观察到的非线性动力学,但由于其计算复杂性,此类模型的使用通常仅限于小规模模拟。此前,我们利用沃尔泰拉泛函级数开发了一种“输入-输出”(IO)突触模型来估计非线性突触动力学。在此,我们提出了一种基于拉盖尔-沃尔泰拉网络(LVN)框架对IO突触模型的改进。我们证明,与IO突触模型的前一版本相比,LVN框架的使用有助于减少内存需求并提高模拟速度。我们展示的结果证明了LVN模型的准确性、内存效率和速度,该模型可扩展到对大量突触的模拟。我们的工作使得在大规模网络模型中能够对复杂的非线性突触动力学进行建模,从而使我们能够探索突触活动如何影响网络行为以及对记忆、学习和神经退行性疾病的影响。