Suppr超能文献

非线性突触动力学建模:用于提高大规模模拟计算效率的拉盖尔 - 沃尔泰拉网络框架

Modeling Nonlinear Synaptic Dynamics: A Laguerre-Volterra Network Framework for Improved Computational Efficiency in Large Scale Simulations.

作者信息

Hu Eric Y, Yu Gene, Song Dong, Jean-Marie Bouteiller C, Theodore Berger W

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:6129-6132. doi: 10.1109/EMBC.2018.8513616.

Abstract

Synapses are key components in signal transmission in the brain, often exhibiting complex non-linear dynamics. Yet, they are often crudely modelled as linear exponential equations in large-scale neuron network simulations. Mechanistic models that use detailed channel receptor kinetics more closely replicate the nonlinear dynamics observed at synapses, but use of such models are generally restricted to small scale simulations due to their computational complexity. Previously, we have developed an ``input-output'' (IO) synapse model using the Volterra functional series to estimate nonlinear synaptic dynamics. Here, we present an improvement on the IO synapse model using the extbf{Laguerre-Volterra network (LVN) framework. We demonstrate that utilization of the LVN framework helps reduce memory requirements and improves the simulation speed in comparison to the previous iteration of the IO synapse model. We present results that demonstrate the accuracy, memory efficiency, and speed of the LVN model that can be extended to simulations with large numbers of synapses. Our efforts enable complex nonlinear synaptic dynamics to be modelled in large-scale network models, allowing us to explore how synaptic activity may influence network behavior and affects memory, learning, and neurodegenerative diseases.

摘要

突触是大脑信号传递的关键组成部分,常常表现出复杂的非线性动力学。然而,在大规模神经元网络模拟中,它们通常被粗略地建模为线性指数方程。使用详细通道受体动力学的机制模型能更紧密地复制在突触处观察到的非线性动力学,但由于其计算复杂性,此类模型的使用通常仅限于小规模模拟。此前,我们利用沃尔泰拉泛函级数开发了一种“输入-输出”(IO)突触模型来估计非线性突触动力学。在此,我们提出了一种基于拉盖尔-沃尔泰拉网络(LVN)框架对IO突触模型的改进。我们证明,与IO突触模型的前一版本相比,LVN框架的使用有助于减少内存需求并提高模拟速度。我们展示的结果证明了LVN模型的准确性、内存效率和速度,该模型可扩展到对大量突触的模拟。我们的工作使得在大规模网络模型中能够对复杂的非线性突触动力学进行建模,从而使我们能够探索突触活动如何影响网络行为以及对记忆、学习和神经退行性疾病的影响。

相似文献

1
2
Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.
Front Comput Neurosci. 2015 Sep 17;9:112. doi: 10.3389/fncom.2015.00112. eCollection 2015.
3
The volterra functional series is a viable alternative to kinetic models for synaptic modeling--calibration and benchmarking.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3291-4. doi: 10.1109/EMBC.2015.7319095.
4
Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2196-2208. doi: 10.1109/TNNLS.2016.2581141. Epub 2016 Jun 24.
5
A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics.
Front Comput Neurosci. 2018 Jul 27;12:58. doi: 10.3389/fncom.2018.00058. eCollection 2018.
7
Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study.
J Comput Neurosci. 2009 Feb;26(1):1-19. doi: 10.1007/s10827-008-0097-3. Epub 2008 May 28.
8
Modeling of nonlinear physiological systems with fast and slow dynamics. I. Methodology.
Ann Biomed Eng. 2002 Feb;30(2):272-81. doi: 10.1114/1.1458591.
10
Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:714-7. doi: 10.1109/EMBC.2014.6943690.

引用本文的文献

本文引用的文献

1
Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2196-2208. doi: 10.1109/TNNLS.2016.2581141. Epub 2016 Jun 24.
2
Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.
Front Comput Neurosci. 2015 Sep 17;9:112. doi: 10.3389/fncom.2015.00112. eCollection 2015.
3
Modeling neuron-glia interactions: from parametric model to neuromorphic hardware.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3581-4. doi: 10.1109/IEMBS.2011.6090598.
4
Integrated multiscale modeling of the nervous system: predicting changes in hippocampal network activity by a positive AMPA receptor modulator.
IEEE Trans Biomed Eng. 2011 Oct;58(10):3008-11. doi: 10.1109/TBME.2011.2158605. Epub 2011 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验