Suppr超能文献

用于建模非线性动力系统的递归拉盖尔-沃尔泰拉网络方法。

Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2196-2208. doi: 10.1109/TNNLS.2016.2581141. Epub 2016 Jun 24.

Abstract

In this paper, we have introduced a general modeling approach for dynamic nonlinear systems that utilizes a variant of the simulated annealing algorithm for training the Laguerre-Volterra network (LVN) to overcome the local minima and convergence problems and employs a pruning technique to achieve sparse LVN representations with l regularization. We tested this new approach with computer simulated systems and extended it to autoregressive sparse LVN (ASLVN) model structures that are suitable for input-output modeling of nonlinear systems that exhibit transitions in dynamic states, such as the Hodgkin-Huxley (H-H) equations of neuronal firing. Application of the proposed ASLVN to the H-H equations yields a more parsimonious input-output model with improved predictive capability that is amenable to more insightful physiological/biological interpretation.

摘要

在本文中,我们介绍了一种用于动态非线性系统的通用建模方法,该方法利用模拟退火算法的变体来训练拉盖尔-沃尔泰拉网络 (LVN),以克服局部极小值和收敛问题,并采用剪枝技术实现具有 l 正则化的稀疏 LVN 表示。我们使用计算机模拟系统对这种新方法进行了测试,并将其扩展到自回归稀疏 LVN (ASLVN) 模型结构,该结构适用于表现出动态状态转换的非线性系统的输入输出建模,例如神经元放电的 Hodgkin-Huxley (H-H) 方程。将提出的 ASLVN 应用于 H-H 方程可得到一个更简洁的输入输出模型,具有改进的预测能力,更便于进行有见地的生理/生物学解释。

相似文献

1
Methodology of Recurrent Laguerre-Volterra Network for Modeling Nonlinear Dynamic Systems.
IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2196-2208. doi: 10.1109/TNNLS.2016.2581141. Epub 2016 Jun 24.
2
Modeling of nonlinear physiological systems with fast and slow dynamics. I. Methodology.
Ann Biomed Eng. 2002 Feb;30(2):272-81. doi: 10.1114/1.1458591.
3
A nonlinear autoregressive Volterra model of the Hodgkin-Huxley equations.
J Comput Neurosci. 2013 Feb;34(1):163-83. doi: 10.1007/s10827-012-0412-x. Epub 2012 Aug 10.
4
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
5
Laguerre-Volterra identification of spike-timing-dependent plasticity from spiking activity: a simulation study.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5578-81. doi: 10.1109/EMBC.2013.6610814.
6
System identification of point-process neural systems using probability based Volterra kernels.
J Neurosci Methods. 2015 Jan 30;240:179-92. doi: 10.1016/j.jneumeth.2014.11.013. Epub 2014 Dec 3.
7
An STDP training algorithm for a spiking neural network with dynamic threshold neurons.
Int J Neural Syst. 2010 Dec;20(6):463-80. doi: 10.1142/S0129065710002553.
8
9
Principal dynamic mode analysis of the Hodgkin-Huxley equations.
Int J Neural Syst. 2015 Mar;25(2):1550001. doi: 10.1142/S012906571550001X. Epub 2014 Nov 20.
10
Implementing spiking neuron model and spike-timing-dependent plasticity with generalized Laguerre-Volterra models.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:714-7. doi: 10.1109/EMBC.2014.6943690.

引用本文的文献

本文引用的文献

1
Principal Dynamic Mode Analysis of EEG Data for Assisting the Diagnosis of Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2015 Feb 5;3:1800110. doi: 10.1109/JTEHM.2015.2401005. eCollection 2015.
2
Dynamic Behavior of Artificial Hodgkin-Huxley Neuron Model Subject to Additive Noise.
IEEE Trans Cybern. 2016 Sep;46(9):2083-93. doi: 10.1109/TCYB.2015.2464106. Epub 2015 Aug 19.
4
Principal dynamic mode analysis of the Hodgkin-Huxley equations.
Int J Neural Syst. 2015 Mar;25(2):1550001. doi: 10.1142/S012906571550001X. Epub 2014 Nov 20.
5
Systematic analysis of the contributions of stochastic voltage gated channels to neuronal noise.
Front Comput Neurosci. 2014 Sep 4;8:105. doi: 10.3389/fncom.2014.00105. eCollection 2014.
6
Model-based asessment of an in-vivo predictive relationship from CA1 to CA3 in the rodent hippocampus.
J Comput Neurosci. 2015 Feb;38(1):89-103. doi: 10.1007/s10827-014-0530-8. Epub 2014 Sep 27.
7
Optimal size of stochastic Hodgkin-Huxley neuronal systems for maximal energy efficiency in coding pulse signals.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032725. doi: 10.1103/PhysRevE.89.032725. Epub 2014 Mar 31.
8
Population Encoding With Hodgkin-Huxley Neurons.
IEEE Trans Inf Theory. 2010 Feb;56(2). doi: 10.1109/TIT.2009.2037040.
9
Time-varying modeling of cerebral hemodynamics.
IEEE Trans Biomed Eng. 2014 Mar;61(3):694-704. doi: 10.1109/TBME.2013.2287120. Epub 2013 Oct 28.
10
On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes.
J Comput Neurosci. 2014 Jun;36(3):321-37. doi: 10.1007/s10827-013-0475-3. Epub 2013 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验