IEEE Trans Neural Netw Learn Syst. 2017 Sep;28(9):2196-2208. doi: 10.1109/TNNLS.2016.2581141. Epub 2016 Jun 24.
In this paper, we have introduced a general modeling approach for dynamic nonlinear systems that utilizes a variant of the simulated annealing algorithm for training the Laguerre-Volterra network (LVN) to overcome the local minima and convergence problems and employs a pruning technique to achieve sparse LVN representations with l regularization. We tested this new approach with computer simulated systems and extended it to autoregressive sparse LVN (ASLVN) model structures that are suitable for input-output modeling of nonlinear systems that exhibit transitions in dynamic states, such as the Hodgkin-Huxley (H-H) equations of neuronal firing. Application of the proposed ASLVN to the H-H equations yields a more parsimonious input-output model with improved predictive capability that is amenable to more insightful physiological/biological interpretation.
在本文中,我们介绍了一种用于动态非线性系统的通用建模方法,该方法利用模拟退火算法的变体来训练拉盖尔-沃尔泰拉网络 (LVN),以克服局部极小值和收敛问题,并采用剪枝技术实现具有 l 正则化的稀疏 LVN 表示。我们使用计算机模拟系统对这种新方法进行了测试,并将其扩展到自回归稀疏 LVN (ASLVN) 模型结构,该结构适用于表现出动态状态转换的非线性系统的输入输出建模,例如神经元放电的 Hodgkin-Huxley (H-H) 方程。将提出的 ASLVN 应用于 H-H 方程可得到一个更简洁的输入输出模型,具有改进的预测能力,更便于进行有见地的生理/生物学解释。