Song Dong, Robinson Brian S, Granacki John J, Berger Theodore W
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:714-7. doi: 10.1109/EMBC.2014.6943690.
To perform large-scale simulations of the brain or build biologically-inspired cognitive architectures, it is essential to have a succinct and flexible model of spiking neurons. The model should be able to capture the nonlinear dynamical properties of various types of neurons and the nonstationary properties such as the spike-timing-dependent plasticity (STDP). In this paper, we propose a generalized Laguerre-Volterra modeling approach for such a task. Due to its built-in nonlinear dynamical terms, the generalized Laguerre-Volterra model (GLVM) can capture various biological processes/mechanisms. Using Laguerre expansion of Volterra kernel technique, the model is fully represented with a small set of coefficients. The calculation of the model variables can be expressed recursively based on only the current and the one-step-before values and thus can be performed efficiently. In addition, we show that, using the same methodology, STDP can be implemented as a specific form of second-order Volterra kernel describing the causal relationship between pairs of input-output spikes and the changes of the feedforward kernels in the GLVMs.
为了对大脑进行大规模模拟或构建受生物启发的认知架构,拥有一个简洁且灵活的脉冲神经元模型至关重要。该模型应能够捕捉各类神经元的非线性动力学特性以及诸如脉冲时间依赖可塑性(STDP)等非平稳特性。在本文中,我们针对此类任务提出了一种广义拉盖尔 - 沃尔泰拉建模方法。由于其内置的非线性动力学项,广义拉盖尔 - 沃尔泰拉模型(GLVM)能够捕捉各种生物过程/机制。利用沃尔泰拉核技术的拉盖尔展开,该模型仅用一小组系数就能完全表示。模型变量的计算可以仅基于当前值和前一步的值递归地表达,因此能够高效执行。此外,我们表明,使用相同的方法,STDP可以实现为描述GLVM中输入 - 输出脉冲对之间因果关系以及前馈核变化的二阶沃尔泰拉核的一种特定形式。