Suppr超能文献

认知的神经生物学基础:通过多输入多输出非线性动态建模进行识别:提出了一种通过对神经细胞动力学进行数学分析和计算机模拟来测量和模拟人类长期记忆形成的方法。

The Neurobiological Basis of Cognition: Identification by Multi-Input, Multioutput Nonlinear Dynamic Modeling: A method is proposed for measuring and modeling human long-term memory formation by mathematical analysis and computer simulation of nerve-cell dynamics.

作者信息

Berger Theodore W, Song Dong, Chan Rosa H M, Marmarelis Vasilis Z

机构信息

Center for Neural Engineering, USC Biomedical Simulations Resource, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089-1111 USA.

出版信息

Proc IEEE Inst Electr Electron Eng. 2010 Mar 4;98(3):356-374. doi: 10.1109/JPROC.2009.2038804.

Abstract

The successful development of neural prostheses requires an understanding of the neurobiological bases of cognitive processes, i.e., how the collective activity of populations of neurons results in a higher level process not predictable based on knowledge of the individual neurons and/or synapses alone. We have been studying and applying novel methods for representing nonlinear transformations of multiple spike train inputs (multiple time series of pulse train inputs) produced by synaptic and field interactions among multiple subclasses of neurons arrayed in multiple layers of incompletely connected units. We have been applying our methods to study of the hippocampus, a cortical brain structure that has been demonstrated, in humans and in animals, to perform the cognitive function of encoding new long-term (declarative) memories. Without their hippocampi, animals and humans retain a short-term memory (memory lasting approximately 1 min), and long-term memory for information learned prior to loss of hippocampal function. Results of more than 20 years of studies have demonstrated that both individual hippocampal neurons, and populations of hippocampal cells, e.g., the neurons comprising one of the three principal subsystems of the hippocampus, induce strong, higher order, nonlinear transformations of hippocampal inputs into hippocampal outputs. For one synaptic input or for a population of synchronously active synaptic inputs, such a transformation is represented by a sequence of action potential inputs being changed into a different sequence of action potential outputs. In other words, an incoming temporal pattern is transformed into a different, outgoing temporal pattern. For multiple, asynchronous synaptic inputs, such a transformation is represented by a spatiotemporal pattern of action potential inputs being changed into a different spatiotemporal pattern of action potential outputs. Our primary thesis is that the encoding of short-term memories into new, long-term memories represents the collective set of nonlinearities induced by the three or four principal subsystems of the hippocampus, i.e., entorhinal cortex-to-dentate gyrus, dentate gyrus-to-CA3 pyramidal cell region, CA3-to-CA1 pyramidal cell region, and CA1-to-subicular cortex. This hypothesis will be supported by studies using in vivo hippocampal multineuron recordings from animals performing memory tasks that require hippocampal function. The implications for this hypothesis will be discussed in the context of "cognitive prostheses"-neural prostheses for cortical brain regions believed to support cognitive functions, and that often are subject to damage due to stroke, epilepsy, dementia, and closed head trauma.

摘要

神经假体的成功研发需要理解认知过程的神经生物学基础,即神经元群体的集体活动如何产生一个仅基于单个神经元和/或突触的知识无法预测的更高层次的过程。我们一直在研究和应用新方法来表示由排列在多层不完全连接单元中的多个神经元亚类之间的突触和场相互作用产生的多个尖峰序列输入(脉冲序列输入的多个时间序列)的非线性变换。我们一直在将我们的方法应用于海马体的研究,海马体是一种皮质脑结构,在人类和动物中都已被证明具有编码新的长期(陈述性)记忆的认知功能。没有海马体,动物和人类只能保留短期记忆(持续约1分钟的记忆),以及海马体功能丧失之前所学信息的长期记忆。超过20年的研究结果表明,单个海马神经元以及海马细胞群体,例如构成海马体三个主要子系统之一的神经元,都会将海马体输入强烈地、高阶地、非线性地转换为海马体输出。对于一个突触输入或一群同步活动的突触输入,这种转换表现为动作电位输入序列被改变为不同的动作电位输出序列。换句话说,一个传入的时间模式被转换为一个不同的、传出的时间模式。对于多个异步突触输入,这种转换表现为动作电位输入的时空模式被改变为不同的动作电位输出时空模式。我们的主要论点是,短期记忆编码为新的长期记忆代表了由海马体的三或四个主要子系统诱导的非线性集合,即内嗅皮质到齿状回、齿状回到CA3锥体细胞区域、CA3到CA1锥体细胞区域以及CA1到下托皮质。这个假设将得到使用执行需要海马体功能的记忆任务的动物的体内海马多神经元记录的研究的支持。将在“认知假体”的背景下讨论这个假设的意义,“认知假体”是用于被认为支持认知功能且经常因中风、癫痫、痴呆和闭合性头部创伤而受损的皮质脑区域的神经假体。

相似文献

2
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
4
Parallel emergence of stable and dynamic memory engrams in the hippocampus.
Nature. 2018 Jun;558(7709):292-296. doi: 10.1038/s41586-018-0191-2. Epub 2018 Jun 6.
5
Sparse Large-Scale Nonlinear Dynamical Modeling of Human Hippocampus for Memory Prostheses.
IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):272-280. doi: 10.1109/TNSRE.2016.2604423. Epub 2016 Aug 30.
6
A hippocampal cognitive prosthesis: multi-input, multi-output nonlinear modeling and VLSI implementation.
IEEE Trans Neural Syst Rehabil Eng. 2012 Mar;20(2):198-211. doi: 10.1109/TNSRE.2012.2189133.
7
Hippocampal CA3 inhibitory neurons receive extensive noncanonical synaptic inputs from CA1 and subicular complex.
J Comp Neurol. 2023 Sep;531(13):1333-1347. doi: 10.1002/cne.25510. Epub 2023 Jun 13.
8
A coupled neural field model for the standard consolidation theory.
J Theor Biol. 2024 Jul 7;588:111818. doi: 10.1016/j.jtbi.2024.111818. Epub 2024 Apr 15.
9
Sparse generalized volterra model of human hippocampal spike train transformation for memory prostheses.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3961-4. doi: 10.1109/EMBC.2015.7319261.

引用本文的文献

1
Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects.
Front Syst Neurosci. 2022 Sep 23;16:1000495. doi: 10.3389/fnsys.2022.1000495. eCollection 2022.
2
A Multi-Channel Asynchronous Neurostimulator With Artifact Suppression for Neural Code-Based Stimulations.
Front Neurosci. 2019 Sep 27;13:1011. doi: 10.3389/fnins.2019.01011. eCollection 2019.
3
Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach?
Front Neurosci. 2019 Jul 4;13:667. doi: 10.3389/fnins.2019.00667. eCollection 2019.
5
Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects.
Front Hum Neurosci. 2019 Jan 31;13:13. doi: 10.3389/fnhum.2019.00013. eCollection 2019.
6
7
A Glutamatergic Spine Model to Enable Multi-Scale Modeling of Nonlinear Calcium Dynamics.
Front Comput Neurosci. 2018 Jul 27;12:58. doi: 10.3389/fncom.2018.00058. eCollection 2018.
9
The volterra functional series is a viable alternative to kinetic models for synaptic modeling--calibration and benchmarking.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:3291-4. doi: 10.1109/EMBC.2015.7319095.
10
Volterra representation enables modeling of complex synaptic nonlinear dynamics in large-scale simulations.
Front Comput Neurosci. 2015 Sep 17;9:112. doi: 10.3389/fncom.2015.00112. eCollection 2015.

本文引用的文献

1
Nonlinear modeling of neural population dynamics for hippocampal prostheses.
Neural Netw. 2009 Nov;22(9):1340-51. doi: 10.1016/j.neunet.2009.05.004. Epub 2009 May 22.
2
Tracking temporal evolution of nonlinear dynamics in hippocampus using time-varying volterra kernels.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4996-9. doi: 10.1109/IEMBS.2008.4650336.
3
Predicting EMG with generalized Volterra kernel model.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:201-4. doi: 10.1109/IEMBS.2008.4649125.
4
Nonlinear modeling of causal interrelationships in neuronal ensembles.
IEEE Trans Neural Syst Rehabil Eng. 2008 Aug;16(4):336-52. doi: 10.1109/TNSRE.2008.926716.
5
Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: Computational study.
J Comput Neurosci. 2009 Feb;26(1):1-19. doi: 10.1007/s10827-008-0097-3. Epub 2008 May 28.
6
Parametric and non-parametric modeling of short-term synaptic plasticity. Part II: Experimental study.
J Comput Neurosci. 2009 Feb;26(1):21-37. doi: 10.1007/s10827-008-0098-2. Epub 2008 May 27.
7
Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1053-66. doi: 10.1109/TBME.2007.891948.
8
A modeling paradigm incorporating parametric and non-parametric methods.
Conf Proc IEEE Eng Med Biol Soc. 2004;2006:647-50. doi: 10.1109/IEMBS.2004.1403241.
9
General methodology for nonlinear modeling of neural systems with Poisson point-process inputs.
Math Biosci. 2005 Jul;196(1):1-13. doi: 10.1016/j.mbs.2005.04.002.
10
Redundancy in the population code of the retina.
Neuron. 2005 May 5;46(3):493-504. doi: 10.1016/j.neuron.2005.03.026.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验