Suppr超能文献

使用LAPPS的稀疏脑电图源定位:最小绝对l-P(0 < p < 1)惩罚解。

Sparse EEG Source Localization Using LAPPS: Least Absolute l-P (0 < p < 1) Penalized Solution.

作者信息

Bore Joyce Chelangat, Yi Chanlin, Li Peiyang, Li Fali, Harmah Dennis Joe, Si Yajing, Guo Daqing, Yao Dezhong, Wan Feng, Xu Peng

出版信息

IEEE Trans Biomed Eng. 2018 Nov 14. doi: 10.1109/TBME.2018.2881092.

Abstract

OBJECTIVE

The electroencephalographic (EEG) inverse problem is ill-posed owing to the electromagnetism Helmholtz theorem and since there are fewer observations than the unknown variables. Apart from the strong background activities (ongoing EEG), evoked EEG is also inevitably contaminated by strong outliers caused by head movements or ocular movements during recordings.

METHODS

Considering the sparse activations during high cognitive processing, we propose a novel robust EEG source imaging algorithm, LAPPS (Least Absolute -P (0 < p < 1) Penalized Solution), which employs the -loss for the residual error to alleviate the effect of outliers and another -penalty norm (p=0.5) to obtain sparse sources while suppressing Gaussian noise in EEG recordings. The resulting optimization problem is solved using a modified ADMM algorithm.

RESULTS

Simulation study was performed to recover sparse signals of randomly selected sources using LAPPS and various methods commonly used for EEG source imaging including WMNE, -norm, sLORETA and FOCUSS solution. The simulation comparison quantitatively demonstrates that LAPPS obtained the best performances in all the conducted simulations for various dipoles configurations under various SNRs on a realistic head model. Moreover, in the localization of brain neural generators in a real visual oddball experiment, LAPPS obtained sparse activations consistent with previous findings revealed by EEG and fMRI.

CONCLUSION

This study demonstrates a potentially useful sparse method for EEG source imaging, creating a platform for investigating the brain neural generators.

SIGNIFICANCE

This method alleviates the effect of noise and recovers sparse sources while maintaining a low computational complexity due to the cheap matrix-vector multiplication.

摘要

目的

由于电磁学中的亥姆霍兹定理,并且观测值比未知变量少,脑电图(EEG)逆问题是不适定的。除了强烈的背景活动(持续的EEG)外,诱发EEG在记录过程中也不可避免地受到头部运动或眼球运动引起的强异常值的污染。

方法

考虑到高认知处理过程中的稀疏激活,我们提出了一种新颖的稳健EEG源成像算法,即LAPPS(最小绝对 -P(0 < p < 1)惩罚解),它对残差采用 - 损失来减轻异常值的影响,并采用另一种 - 惩罚范数(p = 0.5)来获得稀疏源,同时抑制EEG记录中的高斯噪声。使用改进的交替方向乘子法(ADMM)算法解决由此产生的优化问题。

结果

进行了模拟研究,以使用LAPPS和各种常用于EEG源成像的方法(包括加权最小范数估计(WMNE)、 - 范数、统计参数映射(sLORETA)和聚焦解(FOCUSS))来恢复随机选择源的稀疏信号。模拟比较定量地表明,在真实头部模型上,对于各种信噪比下的各种偶极子配置,LAPPS在所有进行的模拟中都获得了最佳性能。此外,在真实视觉Oddball实验中脑神经元发生器的定位中,LAPPS获得了与EEG和功能磁共振成像(fMRI)先前发现一致的稀疏激活。

结论

本研究证明了一种潜在有用的EEG源成像稀疏方法,为研究脑神经元发生器创建了一个平台。

意义

该方法减轻了噪声的影响,恢复了稀疏源,同时由于廉价的矩阵 - 向量乘法而保持了较低的计算复杂度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验