Suppr超能文献

一种用于脑电图源定位的新型贝叶斯方法。

A Novel Bayesian Approach for EEG Source Localization.

作者信息

Oikonomou Vangelis P, Kompatsiaris Ioannis

机构信息

Information Technologies Institute, CERTH, Thessaloniki, Greece.

出版信息

Comput Intell Neurosci. 2020 Oct 30;2020:8837954. doi: 10.1155/2020/8837954. eCollection 2020.

Abstract

We propose a new method for EEG source localization. An efficient solution to this problem requires choosing an appropriate regularization term in order to constraint the original problem. In our work, we adopt the Bayesian framework to place constraints; hence, the regularization term is closely connected to the prior distribution. More specifically, we propose a new sparse prior for the localization of EEG sources. The proposed prior distribution has sparse properties favoring focal EEG sources. In order to obtain an efficient algorithm, we use the variational Bayesian (VB) framework which provides us with a tractable iterative algorithm of closed-form equations. Additionally, we provide extensions of our method in cases where we observe group structures and spatially extended EEG sources. We have performed experiments using synthetic EEG data and real EEG data from three publicly available datasets. The real EEG data are produced due to the presentation of auditory and visual stimulus. We compare the proposed method with well-known approaches of EEG source localization and the results have shown that our method presents state-of-the-art performance, especially in cases where we expect few activated brain regions. The proposed method can effectively detect EEG sources in various circumstances. Overall, the proposed sparse prior for EEG source localization results in more accurate localization of EEG sources than state-of-the-art approaches.

摘要

我们提出了一种用于脑电图(EEG)源定位的新方法。要有效解决此问题,需要选择合适的正则化项来约束原始问题。在我们的工作中,我们采用贝叶斯框架来施加约束;因此,正则化项与先验分布紧密相关。更具体地说,我们为EEG源定位提出了一种新的稀疏先验。所提出的先验分布具有有利于局灶性EEG源的稀疏特性。为了获得一种高效算法,我们使用变分贝叶斯(VB)框架,该框架为我们提供了一种易于处理的闭式方程迭代算法。此外,在观察到组结构和空间扩展的EEG源的情况下,我们还提供了方法的扩展。我们使用来自三个公开可用数据集的合成EEG数据和真实EEG数据进行了实验。真实EEG数据是由于听觉和视觉刺激的呈现而产生的。我们将所提出的方法与EEG源定位的知名方法进行了比较,结果表明我们的方法具有领先的性能,特别是在预期激活脑区较少的情况下。所提出的方法能够在各种情况下有效地检测EEG源。总体而言,所提出的用于EEG源定位的稀疏先验比现有方法能更准确地定位EEG源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e54/7647781/6527bc0ba541/CIN2020-8837954.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验