Department of Physics and Astronomy, University of Sheffield, Sheffield, S3 7RH, UK.
Institut Pascal, PHOTON-N2, Université Clermont Auvergne, CNRS, SIGMA Clermont, F-63000, Clermont-Ferrand, France.
Nat Commun. 2018 Nov 15;9(1):4797. doi: 10.1038/s41467-018-07249-z.
Two-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe in an optical microcavity, forming part-light-part-matter exciton-polaritons. We demonstrate optical initialization of valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than displayed by bare excitons. We utilize an external magnetic field alongside selective exciton-cavity-mode detuning to control the polariton valley pseudospin vector rotation, which reaches 45° at B = 8 T. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
二维过渡金属二卤族化合物 (TMD) 提供了一种独特的可能性,可以使用线偏振光产生和读出激子谷相干性,从而为远距离系统之间的谷信息传递开辟了道路。然而,这些激子的寿命很短(皮秒),并且通过电子-空穴交换相互作用有效地失去了谷相干性。在这里,我们表明,通过将单层 WSe 嵌入光学微腔中,可以控制这些过程,形成部分光-部分物质激子极化激元。我们展示了谷相干极化激元群体的光学初始化,其发光的线性偏振度比裸激子高 3 倍。我们利用外加磁场和选择性激子-腔模式失谐来控制极化激元谷赝自旋矢量的旋转,在 B=8 T 时达到 45°。这项工作提供了对 TMD 退相干机制的独特见解,并展示了在嵌入光子结构的单层半导体中工程化谷赝自旋动力学的潜力。