Department of Physics, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
Materials Science and Engineering, National Tsing-Hua University , Hsinchu 30013, Taiwan.
Nano Lett. 2018 Jan 10;18(1):223-228. doi: 10.1021/acs.nanolett.7b03953. Epub 2017 Dec 15.
The valley pseudospin in monolayer transition metal dichalcogenides (TMDs) has been proposed as a new way to manipulate information in various optoelectronic devices. This relies on a large valley polarization that remains stable over long time scales (hundreds of nanoseconds). However, time-resolved measurements report valley lifetimes of only a few picoseconds. This has been attributed to mechanisms such as phonon-mediated intervalley scattering and a precession of the valley pseudospin through electron-hole exchange. Here we use transient spin grating to directly measure the valley depolarization lifetime in monolayer MoSe. We find a fast valley decay rate that scales linearly with the excitation density at different temperatures. This establishes the presence of strong exciton-exciton Coulomb exchange interactions enhancing the valley depolarization. Our work highlights the microscopic processes inhibiting the efficient use of the exciton valley pseudospin in monolayer TMDs.
单层过渡金属二卤族化合物 (TMDs) 中的谷赝自旋被提议作为在各种光电设备中操纵信息的新方法。这依赖于在长时间尺度(数百纳秒)上保持稳定的大谷极化。然而,时间分辨测量报告的谷寿命只有几皮秒。这归因于诸如声子介导的谷间散射和谷赝自旋通过电子-空穴交换的进动等机制。在这里,我们使用瞬态自旋光栅直接测量单层 MoSe 中的谷去极化寿命。我们发现,在不同温度下,随着激发密度的增加,谷衰减速率呈线性增加。这表明存在强激子-激子库仑交换相互作用,增强了谷去极化。我们的工作强调了抑制单层 TMDs 中有效利用激子谷赝自旋的微观过程。