Zhang Yuhao, Schill Hans-Joachim, Irsen Stephan, Linden Stefan
Physikalisches Institut, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany.
Electron Microscopy and Analytics, Center of Advanced European Studies and Research (Caesar), 53175 Bonn, Germany.
Nanophotonics. 2024 Apr 15;13(15):2847-2856. doi: 10.1515/nanoph-2024-0021. eCollection 2024 Jul.
Light-matter interactions between plasmonic and excitonic modes have attracted considerable interest in recent years. A major challenge in achieving strong coupling is the identification of suitable metallic nanostructures that combine tight field confinement with sufficiently low losses. Here, we report on a room-temperature study on the interaction of tungsten disulfide (WS) monolayer excitons with a hybrid plasmon polariton (HPP) mode supported by nanogroove grating structures milled into single-crystalline silver flakes. By engineering the depth of the nanogroove grating, we can change the character of the HPP mode from propagating surface plasmon polariton-like (SPP-like) to localized surface plasmon resonance-like (LSPR-like). Using reflection spectroscopy, we demonstrate strong coupling with a Rabi splitting of 68 meV between the WS monolayer excitons and the lower HPP branch for an optimized nanograting configuration with 60 nm deep nanogrooves. In contrast, only weak coupling between the constituents is observed for shallower and deeper nanogratings since either the field confinement provided by the HPP is not sufficient or the damping is too large. The possibility to balance the field confinement and losses render nanogroove grating structures an attractive platform for future applications.
近年来,等离子体模式与激子模式之间的光与物质相互作用引起了广泛关注。实现强耦合的一个主要挑战是识别合适的金属纳米结构,这些结构既要具有紧密的场限制,又要具有足够低的损耗。在此,我们报道了一项关于二硫化钨(WS)单层激子与由刻蚀在单晶银薄片上的纳米槽光栅结构所支持的混合等离激元极化激元(HPP)模式相互作用的室温研究。通过设计纳米槽光栅的深度,我们可以将HPP模式的特性从传播的类表面等离激元极化激元(类SPP)转变为局域表面等离激元共振类(类LSPR)。利用反射光谱,对于具有60 nm深纳米槽的优化纳米光栅配置,我们证明了WS单层激子与较低的HPP分支之间存在强耦合,拉比分裂为68 meV。相比之下,对于较浅和较深的纳米光栅,由于HPP提供的场限制不足或阻尼过大,仅观察到各组分之间的弱耦合。平衡场限制和损耗的可能性使纳米槽光栅结构成为未来应用的一个有吸引力的平台。