Harding Nathan, Nigmatullin Ramil, Prokopenko Mikhail
Centre for Complex Systems, Faculty of Engineering and IT, University of Sydney, Sydney, New South Wales 2006, Australia.
Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Westmead, New South Wales 2145, Australia.
Interface Focus. 2018 Dec 6;8(6):20180036. doi: 10.1098/rsfs.2018.0036. Epub 2018 Oct 19.
We present a novel approach to the study of epidemics on networks as thermodynamic phenomena, quantifying the thermodynamic efficiency of contagions, considered as distributed computational processes. Modelling SIS dynamics on a contact network statistical-mechanically, we follow the maximum entropy (MaxEnt) principle to obtain steady-state distributions and derive, under certain assumptions, relevant thermodynamic quantities both analytically and numerically. In particular, we obtain closed-form solutions for some cases, while interpreting key epidemic variables, such as the reproductive ratio of a SIS model, in a statistical mechanical setting. On the other hand, we consider configuration and free entropy, as well as the Fisher information, in the epidemiological context. This allowed us to identify criticality and distinct phases of epidemic processes. For each of the considered thermodynamic quantities, we compare the analytical solutions informed by the MaxEnt principle with the numerical estimates for SIS epidemics simulated on Watts-Strogatz random graphs.
我们提出了一种将网络上的流行病研究视为热力学现象的新方法,量化被视为分布式计算过程的传染病的热力学效率。通过统计力学方法在接触网络上对SIS动力学进行建模,我们遵循最大熵(MaxEnt)原理来获得稳态分布,并在某些假设下,通过解析和数值方法推导相关的热力学量。特别是,我们在某些情况下获得了封闭形式的解,同时在统计力学框架下解释关键的流行病变量,如SIS模型的繁殖数。另一方面,我们在流行病学背景下考虑构型熵、自由熵以及费希尔信息。这使我们能够识别流行病过程的临界性和不同阶段。对于每个考虑的热力学量,我们将基于MaxEnt原理的解析解与在Watts-Strogatz随机图上模拟的SIS流行病的数值估计进行比较。