Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Wash.
Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Wash.
J Allergy Clin Immunol. 2019 Apr;143(4):1536-1548. doi: 10.1016/j.jaci.2018.10.046. Epub 2018 Nov 14.
Macrophage plasticity allows cells to adopt different phenotypes, a property with important implications in disorders such as cystic fibrosis (CF) and asthma.
We sought to examine the transcriptional and functional significance of macrophage repolarization from an M1 to an M2 phenotype and assess the role of a common human genetic disorder (CF) and a prototypical allergic disease (asthma) in this transformation.
Monocyte-derived macrophages were collected from healthy subjects and patients with CF and polarized to an M2 state by using IL-4, IL-10, glucocorticoids, apoptotic PMNs, or azithromycin. We performed transcriptional profiling and pathway analysis for each stimulus. We assessed the ability of M2-repolarized macrophages to respond to LPS rechallenge and clear apoptotic neutrophils and used murine models to determine conserved functional responses to IL-4 and IL-10. We investigated whether M2 signatures were associated with alveolar macrophage phenotypes in asthmatic patients.
We found that macrophages exhibit highly diverse responses to distinct M2-polarizing stimuli. Specifically, IL-10 activated proinflammatory pathways and abrogated LPS tolerance, allowing rapid restoration of LPS responsiveness. In contrast, IL-4 enhanced LPS tolerance, dampening proinflammatory responses after repeat LPS challenge. A common theme observed across all M2 stimuli was suppression of interferon-associated pathways. We found that CF macrophages had intact reparative and transcriptional responses, suggesting that macrophage contributions to CF-related lung disease are primarily shaped by their environment. Finally, we leveraged in vitro-derived signatures to show that allergen provocation induces distinct M2 state transcriptional patterns in alveolar macrophages.
Our findings highlight the diversity of macrophage polarization, attribute functional consequences to different M2 stimuli, and provide a framework to phenotype macrophages in disease states.
巨噬细胞可塑性允许细胞采用不同的表型,这一特性在囊性纤维化(CF)和哮喘等疾病中具有重要意义。
我们试图研究巨噬细胞从 M1 表型向 M2 表型再极化的转录和功能意义,并评估常见的人类遗传疾病(CF)和典型的过敏性疾病(哮喘)在这一转变中的作用。
从健康受试者和 CF 患者中采集单核细胞衍生的巨噬细胞,并通过使用 IL-4、IL-10、糖皮质激素、凋亡 PMN 或阿奇霉素将其极化至 M2 状态。我们对每种刺激物进行了转录谱分析和途径分析。我们评估了 M2 再极化巨噬细胞对 LPS 再挑战和清除凋亡中性粒细胞的反应能力,并使用鼠模型确定了对 IL-4 和 IL-10 的保守功能反应。我们研究了 M2 特征是否与哮喘患者肺泡巨噬细胞表型相关。
我们发现巨噬细胞对不同的 M2 极化刺激表现出高度多样化的反应。具体而言,IL-10 激活了促炎途径并消除了 LPS 耐受性,从而能够快速恢复 LPS 反应性。相比之下,IL-4 增强了 LPS 耐受性,在重复 LPS 挑战后抑制了促炎反应。所有 M2 刺激物共有的一个主题是抑制干扰素相关途径。我们发现 CF 巨噬细胞具有完整的修复和转录反应,这表明巨噬细胞对 CF 相关肺部疾病的贡献主要取决于其环境。最后,我们利用体外衍生的特征表明,过敏原激发会在肺泡巨噬细胞中诱导不同的 M2 状态转录模式。
我们的研究结果强调了巨噬细胞极化的多样性,将功能后果归因于不同的 M2 刺激物,并提供了一个在疾病状态下表型化巨噬细胞的框架。