Suppr超能文献

解析羧酶体定位蛋白 McdB 的相分离和寡聚化活性。

Dissecting the phase separation and oligomerization activities of the carboxysome positioning protein McdB.

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan-Ann Arbor, Ann Arbor, United States.

Department of Biological Chemistry, University of Michigan-Ann Arbor, Ann Arbor, United States.

出版信息

Elife. 2023 Sep 5;12:e81362. doi: 10.7554/eLife.81362.

Abstract

Across bacteria, protein-based organelles called bacterial microcompartments (BMCs) encapsulate key enzymes to regulate their activities. The model BMC is the carboxysome that encapsulates enzymes for CO fixation to increase efficiency and is found in many autotrophic bacteria, such as cyanobacteria. Despite their importance in the global carbon cycle, little is known about how carboxysomes are spatially regulated. We recently identified the two-factor system required for the maintenance of carboxysome distribution (McdAB). McdA drives the equal spacing of carboxysomes via interactions with McdB, which associates with carboxysomes. McdA is a ParA/MinD ATPase, a protein family well studied in positioning diverse cellular structures in bacteria. However, the adaptor proteins like McdB that connect these ATPases to their cargos are extremely diverse. In fact, McdB represents a completely unstudied class of proteins. Despite the diversity, many adaptor proteins undergo phase separation, but functional roles remain unclear. Here, we define the domain architecture of McdB from the model cyanobacterium PCC 7942, and dissect its mode of biomolecular condensate formation. We identify an N-terminal intrinsically disordered region (IDR) that modulates condensate solubility, a central coiled-coil dimerizing domain that drives condensate formation, and a C-terminal domain that trimerizes McdB dimers and provides increased valency for condensate formation. We then identify critical basic residues in the IDR, which we mutate to glutamines to solubilize condensates. Finally, we find that a condensate-defective mutant of McdB has altered association with carboxysomes and influences carboxysome enzyme content. The results have broad implications for understanding spatial organization of BMCs and the molecular grammar of protein condensates.

摘要

在细菌中,称为细菌微隔间(BMC)的基于蛋白质的细胞器将关键酶包裹起来,以调节其活性。模型 BMC 是羧基体,它将 CO 固定所需的酶包裹起来,以提高效率,存在于许多自养细菌中,如蓝细菌。尽管它们在全球碳循环中很重要,但对于羧基体如何进行空间调节知之甚少。我们最近确定了维持羧基体分布(McdAB)所需的两因素系统。McdA 通过与羧基体相关联的 McdB 的相互作用,驱动羧基体的等间距分布。McdA 是 ParA/MinD ATPase,这是一个在细菌中定位多种细胞结构的蛋白质家族,研究得非常透彻。然而,将这些 ATP 酶与其 cargo 连接起来的衔接蛋白如 McdB 则极其多样化。实际上,McdB 代表了一个完全未被研究的蛋白质类。尽管存在多样性,但许多衔接蛋白会经历相分离,但功能作用仍不清楚。在这里,我们定义了来自模型蓝细菌 PCC 7942 的 McdB 的结构域架构,并剖析了其生物分子凝聚物形成的模式。我们确定了一个 N 端固有无序区域(IDR),它调节凝聚物的溶解度,一个中央螺旋卷曲二聚化结构域,驱动凝聚物的形成,以及一个 C 端结构域,它使 McdB 二聚体三聚化,并为凝聚物的形成提供了更高的价数。然后,我们确定了 IDR 中的关键碱性残基,我们将其突变为谷氨酰胺以使凝聚物溶解。最后,我们发现 McdB 的凝聚物缺陷突变体与羧基体的结合发生改变,并影响羧基体酶的含量。这些结果对理解 BMC 的空间组织和蛋白质凝聚物的分子语法具有广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a6/10554743/cb1b60fb3669/elife-81362-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验