Division of Molecular Medicine, Department of Medicine, University of Minnesota, 401 East River Parkway, MMC 194, Minneapolis, MN 55455, USA; Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA.
Cell Metab. 2019 Feb 5;29(2):383-398.e7. doi: 10.1016/j.cmet.2018.10.015. Epub 2018 Nov 15.
Metabolic plasticity has been linked to polarized macrophage function, but mechanisms connecting specific fuels to tissue macrophage function remain unresolved. Here we apply a stable isotope tracing, mass spectrometry-based untargeted metabolomics approach to reveal the metabolome penetrated by hepatocyte-derived glucose and ketone bodies. In both classically and alternatively polarized macrophages, [C]acetoacetate (AcAc) labeled ∼200 chemical features, but its reduced form D-[C]β-hydroxybutyrate (D-βOHB) labeled almost none. [C]glucose labeled ∼500 features, and while unlabeled AcAc competed with only ∼15% of them, the vast majority required the mitochondrial enzyme succinyl-coenzyme A-oxoacid transferase (SCOT). AcAc carbon labeled metabolites within the cytoplasmic glycosaminoglycan pathway, which regulates tissue fibrogenesis. Accordingly, livers of mice lacking SCOT in macrophages were predisposed to accelerated fibrogenesis. Exogenous AcAc, but not D-βOHB, ameliorated diet-induced hepatic fibrosis. These data support a hepatocyte-macrophage ketone shuttle that segregates AcAc from D-βOHB, coordinating the fibrogenic response to hepatic injury via mitochondrial metabolism in tissue macrophages.
代谢可塑性与极化巨噬细胞功能有关,但将特定燃料与组织巨噬细胞功能联系起来的机制仍未解决。在这里,我们应用稳定同位素示踪、基于质谱的非靶向代谢组学方法来揭示肝细胞衍生的葡萄糖和酮体穿透的代谢组。在经典和替代极化的巨噬细胞中,[C]乙酰乙酸(AcAc)标记了约 200 种化学特征,但它的还原形式 D-[C]β-羟基丁酸(D-βOHB)标记的特征几乎没有。[C]葡萄糖标记了约 500 种特征,虽然未标记的 AcAc 仅与其中约 15%竞争,但绝大多数需要线粒体酶琥珀酰辅酶 A-氧代酸转移酶(SCOT)。AcAc 碳标记细胞质糖胺聚糖途径内的代谢物,该途径调节组织纤维化。因此,巨噬细胞中缺乏 SCOT 的小鼠肝脏更容易发生加速纤维化。外源性 AcAc,但不是 D-βOHB,可改善饮食诱导的肝纤维化。这些数据支持肝细胞-巨噬细胞酮体穿梭,它将 AcAc 与 D-βOHB 分开,通过组织巨噬细胞中的线粒体代谢协调对肝损伤的纤维生成反应。