Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas.
Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.
NMR Biomed. 2019 Jun;32(6):e4091. doi: 10.1002/nbm.4091. Epub 2019 Apr 10.
Mitochondrial dysfunction is considered to be an important component of many metabolic diseases yet there is no reliable imaging biomarker for monitoring mitochondrial damage in vivo. A large prior literature on inter-conversion of β-hydroxybutyrate and acetoacetate indicates that the process is mitochondrial and that the ratio reflects a specifically mitochondrial redox state. Therefore, the conversion of [1,3- C]acetoacetate to [1,3- C]β-hydroxybutyrate is expected to be sensitive to the abnormal redox state present in dysfunctional mitochondria. In this study, we examined the conversion of hyperpolarized (HP) C-acetoacetate (AcAc) to C-β-hydroxybutyrate (β-HB) as a potential imaging biomarker for mitochondrial redox and dysfunction in perfused rat hearts. Conversion of HP-AcAc to β-HB was investigated using C magnetic resonance spectroscopy in Langendorff-perfused rat hearts in four groups: control, global ischemic reperfusion, low-flow ischemic, and rotenone (mitochondrial complex-I inhibitor)-treated hearts. We observed that more β-HB was produced from AcAc in ischemic hearts and the hearts exposed to complex I inhibitor rotenone compared with controls, consistent with the accumulation of excess mitochondrial NADH. The increase in β-HB, as detected by C MRS, was validated by a direct measure of tissue β-HB by H nuclear magnetic resonance in tissue extracts. The redox ratio, NAD /NADH, measured by enzyme assays of homogenized tissue, also paralleled production of β-HB from AcAc. Transmission electron microscopy of tissues provided direct evidence for abnormal mitochondrial structure in each ischemic tissue model. The results suggest that conversion of HP-AcAc to HP-β-HB detected by C-MRS may serve as a useful diagnostic marker of mitochondrial redox and dysfunction in heart tissue in vivo.
线粒体功能障碍被认为是许多代谢疾病的重要组成部分,但目前还没有可靠的成像生物标志物来监测体内线粒体损伤。大量关于β-羟丁酸和乙酰乙酸相互转化的文献表明,该过程是线粒体的,并且该比值反映了特定的线粒体氧化还原状态。因此,[1,3-¹³C]乙酰乙酸向[1,3-¹³C]β-羟丁酸的转化预计将对功能失调线粒体中存在的异常氧化还原状态敏感。在这项研究中,我们研究了超极化(HP)¹³C-乙酰乙酸(AcAc)向¹³C-β-羟丁酸(β-HB)的转化作为一种潜在的成像生物标志物,用于检测灌注大鼠心脏中的线粒体氧化还原和功能障碍。在 Langendorff 灌注的大鼠心脏的四个组中,使用¹³C 磁共振波谱法研究了 HP-AcAc 向β-HB 的转化:对照组、全缺血再灌注组、低流量缺血组和鱼藤酮(线粒体复合物 I 抑制剂)处理组。我们观察到与对照组相比,缺血心脏和暴露于复合物 I 抑制剂鱼藤酮的心脏中 AcAc 转化为更多的β-HB,这与过量线粒体 NADH 的积累一致。¹³C MRS 检测到的β-HB 增加通过组织提取物中¹H 磁共振的直接β-HB 测量得到了验证。通过组织匀浆酶测定测量的氧化还原比,NAD/NADH,也与 AcAc 转化为β-HB 平行。组织的透射电子显微镜为每个缺血组织模型中的异常线粒体结构提供了直接证据。结果表明,¹³C-MRS 检测到的 HP-AcAc 向 HP-β-HB 的转化可能是体内心脏组织中线粒体氧化还原和功能障碍的有用诊断标志物。