Suppr超能文献

多层组织工程支架的三维打印

Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.

作者信息

Bittner Sean M, Guo Jason L, Melchiorri Anthony, Mikos Antonios G

机构信息

Department of Bioengineering, Rice University, Houston, TX.

Center for Engineering Complex Tissues.

出版信息

Mater Today (Kidlington). 2018 Oct;21(8):861-874. doi: 10.1016/j.mattod.2018.02.006. Epub 2018 Mar 20.

Abstract

The field of tissue engineering has produced new therapies for the repair of damaged tissues and organs, utilizing biomimetic scaffolds that mirror the mechanical and biological properties of host tissue. The emergence of three-dimensional printing (3DP) technologies has enabled the fabrication of highly complex scaffolds which offer a more accurate replication of native tissue properties and architecture than previously possible. Of strong interest to tissue engineers is the construction of multilayered scaffolds that target distinct regions of complex tissues. Musculoskeletal and dental tissues in particular, such as the osteochondral unit and periodontal complex, are composed of multiple interfacing tissue types, and thus benefit from the usage of multilayered scaffold fabrication. Traditional 3DP technologies such as extrusion printing and selective laser sintering have been used for the construction of scaffolds with gradient architectures and mixed material compositions. Additionally, emerging bioprinting strategies have been used for the direct printing and spatial patterning of cells and chemical factors, capturing the complex organization found in the body. To better replicate the varied and gradated properties of larger tissues, researchers have created scaffolds composed of multiple materials spanning natural polymers, synthetic polymers, and ceramics. By utilizing high precision 3DP techniques and judicious material selection, scaffolds can thus be designed to address the regeneration of previously challenging musculoskeletal, dental, and other heterogeneous target tissues. These multilayered 3DP strategies show great promise in the future of tissue engineering.

摘要

组织工程领域已经开发出了用于修复受损组织和器官的新疗法,利用模仿宿主组织机械和生物学特性的仿生支架。三维打印(3DP)技术的出现使得制造高度复杂的支架成为可能,这种支架能够比以往更精确地复制天然组织的特性和结构。组织工程师们特别感兴趣的是构建针对复杂组织不同区域的多层支架。尤其是肌肉骨骼组织和牙齿组织,如骨软骨单元和牙周复合体,是由多种相互连接的组织类型组成的,因此受益于多层支架制造技术的应用。传统的3DP技术,如挤出打印和选择性激光烧结,已被用于构建具有梯度结构和混合材料成分的支架。此外,新兴的生物打印策略已被用于细胞和化学因子的直接打印和空间图案化,再现了体内复杂的组织结构。为了更好地复制更大组织的多样和渐变特性,研究人员创造了由天然聚合物、合成聚合物和陶瓷等多种材料组成的支架。通过利用高精度的3DP技术和明智的材料选择,支架可以被设计用于解决以前具有挑战性的肌肉骨骼、牙齿和其他异质目标组织的再生问题。这些多层3DP策略在组织工程的未来显示出巨大的潜力。

相似文献

1
Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.
Mater Today (Kidlington). 2018 Oct;21(8):861-874. doi: 10.1016/j.mattod.2018.02.006. Epub 2018 Mar 20.
3
Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds.
Bioprinting. 2018 Dec;12. doi: 10.1016/j.bprint.2018.e00032. Epub 2018 Sep 20.
4
Biomimetic Bilayered Scaffolds for Tissue Engineering: From Current Design Strategies to Medical Applications.
Adv Healthc Mater. 2023 Jul;12(17):e2203115. doi: 10.1002/adhm.202203115. Epub 2023 Mar 8.
5
Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering.
Biofabrication. 2013 Dec;5(4):045003. doi: 10.1088/1758-5082/5/4/045003. Epub 2013 Sep 23.
6
Three-dimensional (3D) printed scaffold and material selection for bone repair.
Acta Biomater. 2019 Jan 15;84:16-33. doi: 10.1016/j.actbio.2018.11.039. Epub 2018 Nov 24.
7
3D Printing for Bone Regeneration.
Curr Osteoporos Rep. 2020 Oct;18(5):505-514. doi: 10.1007/s11914-020-00606-2.
10
Current state of fabrication technologies and materials for bone tissue engineering.
Acta Biomater. 2018 Oct 15;80:1-30. doi: 10.1016/j.actbio.2018.09.031. Epub 2018 Sep 22.

引用本文的文献

2
Pre-Loading of Cells via Vapor Sublimation and the Deposition Polymerization Process with a 3D Porous Scaffold for Cell Cultures.
ACS Biomater Sci Eng. 2025 Aug 11;11(8):4941-4953. doi: 10.1021/acsbiomaterials.5c00439. Epub 2025 Jul 10.
3
Bioactive Inorganic Materials for Innervated Multi-Tissue Regeneration.
Adv Sci (Weinh). 2025 Apr;12(13):e2415344. doi: 10.1002/advs.202415344. Epub 2025 Feb 27.
4
Gradient scaffolds in bone-soft tissue interface engineering: Structural characteristics, fabrication techniques, and emerging trends.
J Orthop Translat. 2025 Jan 28;50:333-353. doi: 10.1016/j.jot.2024.10.015. eCollection 2025 Jan.
5
6
3D Printing-Based Hydrogel Dressings for Wound Healing.
Adv Sci (Weinh). 2024 Dec;11(47):e2404580. doi: 10.1002/advs.202404580. Epub 2024 Nov 18.
7
Review on Engineering of Bone Scaffolds Using Conventional and Additive Manufacturing Technologies.
3D Print Addit Manuf. 2024 Aug 20;11(4):1418-1440. doi: 10.1089/3dp.2022.0360. eCollection 2024 Aug.
8
The cutting-edge progress in bioprinting for biomedicine: principles, applications, and future perspectives.
MedComm (2020). 2024 Sep 23;5(10):e753. doi: 10.1002/mco2.753. eCollection 2024 Oct.
10
Vat photopolymerization printing of functionalized hydrogels on commercial contact lenses.
Sci Rep. 2024 Jun 15;14(1):13860. doi: 10.1038/s41598-024-63846-7.

本文引用的文献

1
Extrusion-Based 3D Printing of Poly(propylene fumarate) in a Full-Factorial Design.
ACS Biomater Sci Eng. 2016 Oct 10;2(10):1771-1780. doi: 10.1021/acsbiomaterials.6b00026. Epub 2016 Mar 14.
2
Effects of Shear Stress Gradients on Ewing Sarcoma Cells Using 3D Printed Scaffolds and Flow Perfusion.
ACS Biomater Sci Eng. 2018 Feb 12;4(2):347-356. doi: 10.1021/acsbiomaterials.6b00641. Epub 2017 Feb 15.
3
3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration.
J Mater Chem B. 2015 Jul 21;3(27):5415-5425. doi: 10.1039/c5tb00637f. Epub 2015 Jun 5.
5
Development of a clay based bioink for 3D cell printing for skeletal application.
Biofabrication. 2017 Jul 25;9(3):034103. doi: 10.1088/1758-5090/aa7e96.
7
Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits.
Biomaterials. 2017 Aug;137:37-48. doi: 10.1016/j.biomaterials.2017.05.021. Epub 2017 May 12.
8
3D printing for the design and fabrication of polymer-based gradient scaffolds.
Acta Biomater. 2017 Jul 1;56:3-13. doi: 10.1016/j.actbio.2017.03.030. Epub 2017 Mar 22.
9
Three-dimensional tissues using human pluripotent stem cell spheroids as biofabrication building blocks.
Biofabrication. 2017 Apr 24;9(2):025007. doi: 10.1088/1758-5090/aa663b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验