Suppr超能文献

用于药物评估的多成分阵列生物打印,以模拟胶质母细胞瘤的肿瘤内异质性。

Bioprinting of a multi-composition array to mimic intra-tumor heterogeneity of glioblastoma for drug evaluation.

作者信息

Lee Gihyun, Kim Soo Jee, Choi Yejin, Park Jongho, Park Je-Kyun

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

KI for Health Science and Technology, KAIST Institutes (KI), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.

出版信息

Microsyst Nanoeng. 2024 Dec 11;10(1):186. doi: 10.1038/s41378-024-00843-w.

Abstract

Microextrusion printing is widely used to precisely manufacture microdevices, microphysiological systems, and biological constructs that feature micropatterns and microstructures consisting of various materials. This method is particularly useful for creating biological models that recapitulate in vivo-like cellular microenvironments. Although there is a recent demand for high-throughput data from a single in vitro system, it remains challenging to fabricate multiple models with a small volume of bioinks in a stable and precise manner due to the spreading and evaporation issues of the extruded hydrogel. As printing time increases, the extruded bioink spreads and evaporates, leading to technical problems that decrease printing resolution and stability, as well as biological problems that affect 3D culture space and cell viability. In this study, we describe a novel microextrusion bioprinting technique to stably fabricate a multi-composition array consisting of massive and nanoliter-scale hydrogel dots by using multi-bioink printing and aerosol-based crosslinking techniques to prevent spreading and evaporation issues. We confirmed that the crosslinking aerosol effectively prevented spreading and evaporation by analyzing the morphological changes of the extruded hydrogel. By adjusting the extruding ratio of the bioinks, we were able to print a multi-composition array. This stable and massive array printing technique allowed us to improve the replicates of biological models and provide various data from a single culture system. The array printing technique was applied to recapitulate the intra-tumor heterogeneity of glioblastoma and assess temozolomide efficacy on the array model.

摘要

微挤压打印被广泛用于精确制造具有由各种材料组成的微图案和微结构的微器件、微生理系统和生物构建体。这种方法对于创建能够重现体内样细胞微环境的生物模型特别有用。尽管最近对来自单个体外系统的高通量数据有需求,但由于挤出水凝胶的扩散和蒸发问题,以稳定且精确的方式用少量生物墨水制造多个模型仍然具有挑战性。随着打印时间的增加,挤出的生物墨水会扩散和蒸发,导致降低打印分辨率和稳定性的技术问题,以及影响三维培养空间和细胞活力的生物学问题。在本研究中,我们描述了一种新型微挤压生物打印技术,通过使用多生物墨水打印和气溶胶交联技术来防止扩散和蒸发问题,从而稳定地制造由大量纳升规模水凝胶点组成的多成分阵列。通过分析挤出水凝胶的形态变化,我们证实交联气溶胶有效地防止了扩散和蒸发。通过调整生物墨水的挤出比例,我们能够打印出多成分阵列。这种稳定且大量的阵列打印技术使我们能够提高生物模型的复制品数量,并从单个培养系统中提供各种数据。该阵列打印技术被应用于重现胶质母细胞瘤的肿瘤内异质性,并评估替莫唑胺在阵列模型上的疗效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验