Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan.
Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Ishikawa, Japan.
Plant Biotechnol J. 2019 May;17(5):969-981. doi: 10.1111/pbi.13032. Epub 2018 Dec 5.
Betalains are plant pigments primarily produced by plants of the order Caryophyllales. Because betalain possesses anti-inflammatory and anticancer activities, it may be useful as a pharmaceutical agent and dietary supplement. Recent studies have identified the genes involved in the betalain biosynthesis of betanin. Amaranthin and celosianin II are abundant in the quinoa (Chenopodium quinoa Willd.) hypocotyl, and amaranthin comprises glucuronic acid bound to betanin; therefore, this suggests the existence of a glucuronyltransferase involved in the synthesis of amaranthin in the quinoa hypocotyl. To identify the gene involved in amaranthin biosynthesis, we performed a BLAST analysis and phylogenetic tree analysis based on sequences homologous to flavonoid glycosyltransferase, followed by expression analysis on the quinoa hypocotyl to obtain three candidate proteins. Production of amaranthin in a transient Nicotiana benthamiana expression system was evaluated for these candidates and one was identified as having the ability to produce amaranthin. The gene encoding this protein was quinoa amaranthin synthetase 1 (CqAmaSy1). We also created a transgenic tobacco bright yellow-2 (BY-2) cell line wherein four betalain biosynthesis genes were introduced to facilitate amaranthin production. This transgenic cell line produced 13.67 ± 4.13 μm (mean ± SEM) amaranthin and 26.60 ± 1.53 μm betanin, whereas the production of isoamaranthin and isobetanin could not be detected. Tests confirmed the ability of amaranthin and betanin to slightly suppress cancer cell viability. Furthermore, amaranthin was shown to significantly inhibit HIV-1 protease activity, whereas betanin did not.
甜菜红素是主要由石竹目植物产生的植物色素。由于甜菜红素具有抗炎和抗癌活性,因此它可能作为一种药物制剂和膳食补充剂有用。最近的研究已经确定了参与甜菜红素生物合成的基因。甜菜红苷、甜菜黄素和甜菜酰胺 II 在藜麦(Chenopodium quinoa Willd.)下胚轴中含量丰富,而甜菜黄素由与甜菜红苷结合的葡萄糖醛酸组成;因此,这表明藜麦下胚轴中存在参与甜菜酰胺合成的葡萄糖醛基转移酶。为了鉴定参与甜菜红素生物合成的基因,我们根据与类黄酮糖基转移酶同源的序列进行了 BLAST 分析和系统发育树分析,然后对藜麦下胚轴进行表达分析,获得了三个候选蛋白。我们评估了这三个候选蛋白在瞬时表达系统中产生甜菜红苷的能力,其中一个被鉴定为具有产生甜菜红苷的能力。该蛋白的编码基因被命名为藜麦甜菜红素合成酶 1(CqAmaSy1)。我们还创建了一个转烟草 bright yellow-2(BY-2)细胞系,其中引入了四个甜菜红素生物合成基因以促进甜菜红苷的产生。该转基因细胞系产生了 13.67 ± 4.13 μm(平均值 ± SEM)的甜菜红苷和 26.60 ± 1.53 μm 的甜菜黄素,而无法检测到异甜菜红苷和异甜菜黄素的产生。测试证实了甜菜红苷和甜菜黄素能够轻微抑制癌细胞活力。此外,甜菜红苷显著抑制 HIV-1 蛋白酶活性,而甜菜黄素则没有。