Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, CA 94720, USA.
Glob Chang Biol. 2013 Sep;19(9):2804-13. doi: 10.1111/gcb.12229. Epub 2013 Jul 14.
Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P < 0.0001, pseudo R(2) = 0.79) in soils sampled within and among five tropical forest sites. A similar pattern occurred in the absence of soil, suggesting an abiotic driver of this reaction. No phenol oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils.
湿热热带森林拥有全球最快的有机质分解速率,这通常与表层土壤中氧气(O2)含量的波动相一致。在厌氧条件下,微生物铁(Fe)还原会生成还原态铁[Fe(II)],随后在好氧条件下氧化为 Fe(III)。我们证明,Fe(II)氧化通过两种机制刺激有机质分解:(i)有机质氧化,可能由活性氧物质驱动;(ii)增加溶解有机碳(DOC)的可用性,可能由酸化驱动。在五个热带森林地点内和之间采样的土壤中,酚氧化活性与 Fe(II)浓度呈线性关系(P<0.0001,拟准 R2=0.79)。在没有土壤的情况下也出现了类似的模式,表明这是一种非生物驱动因素。在厌氧条件下的土壤中没有酚氧化活性,这意味着除了 Fe(II)之外,O2 或过氧化氢(H2O2)等氧化剂也很重要。Fe(II)与 H2O2 之间的反应会生成羟基自由基,这是一种对有机化合物具有强非选择性的氧化剂。我们发现,随着土壤中 Fe(II)浓度的增加,H2O2 的消耗不断增加,这表明 Fe(II)氧化产生的活性氧物质解释了样品中酚氧化活性的变化。以田间浓度向土壤中添加 Fe(II)可刺激 C 矿化,短期增幅高达 270%,可能是通过第二种机制。Fe(II)氧化导致 pH 值下降和 DOC 呈单调增加;pH 值下降两个单位会使 DOC 增加一倍,可能会刺激微生物呼吸。通过独立于 Fe(II)操纵土壤酸度,我们得到了类似的结果,这表明 Fe(II)氧化除了产生活性氧物质外,还通过 pH 波动影响 C 底物的可用性。铁氧化与有机质分解耦合,有助于尽管周期性的 O2 限制,在湿热热带森林中仍保持快速的碳循环,并可能有助于解释这些土壤中复杂 C 分子的快速周转。