Suppr超能文献

硫螺旋菌属产氢使ε变形菌纲之间能够进行互营共生。

Hydrogen production by Sulfurospirillum species enables syntrophic interactions of Epsilonproteobacteria.

机构信息

Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, 07743, Jena, Germany.

Center for Electron Microscopy of the University Hospital Jena, Ziegelmühlenweg 1, 07743, Jena, Germany.

出版信息

Nat Commun. 2018 Nov 19;9(1):4872. doi: 10.1038/s41467-018-07342-3.

Abstract

Hydrogen-producing bacteria are of environmental importance, since hydrogen is a major electron donor for prokaryotes in anoxic ecosystems. Epsilonproteobacteria are currently considered to be hydrogen-oxidizing bacteria exclusively. Here, we report hydrogen production upon pyruvate fermentation for free-living Epsilonproteobacteria, Sulfurospirillum spp. The amount of hydrogen produced is different in two subgroups of Sulfurospirillum spp., represented by S. cavolei and S. multivorans. The former produces more hydrogen and excretes acetate as sole organic acid, while the latter additionally produces lactate and succinate. Hydrogen production can be assigned by differential proteomics to a hydrogenase (similar to hydrogenase 4 from E. coli) that is more abundant during fermentation. A syntrophic interaction is established between Sulfurospirillum multivorans and Methanococcus voltae when cocultured with lactate as sole substrate, as the former cannot grow fermentatively on lactate alone and the latter relies on hydrogen for growth. This might hint to a yet unrecognized role of Epsilonproteobacteria as hydrogen producers in anoxic microbial communities.

摘要

产氢细菌具有重要的环境意义,因为在缺氧生态系统中,氢气是原核生物的主要电子供体。目前,ε变形菌被认为是专门的产氢细菌。在这里,我们报告了自由生活的ε变形菌硫螺旋菌属(Sulfurospirillum spp.)在丙酮酸发酵过程中产氢的情况。产氢量在硫螺旋菌属的两个亚群中有所不同,以 S. cavolei 和 S. multivorans 为代表。前者产生更多的氢气,并将乙酸盐作为唯一的有机酸排出,而后者则额外产生乳酸盐和琥珀酸盐。通过差异蛋白质组学,可以将产氢归因于一种氢化酶(类似于大肠杆菌的氢化酶 4),该酶在发酵过程中更为丰富。当硫螺旋菌多亚种与乳酸盐作为唯一底物共培养时,与甲烷球菌(Methanococcus voltae)建立了共营养相互作用,因为前者不能单独发酵乳酸盐生长,而后者则依赖氢气生长。这可能暗示着ε变形菌在缺氧微生物群落中作为产氢菌的作用尚未被认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df2d/6242987/104a6862a656/41467_2018_7342_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验