Suppr超能文献

用于非水双离子电池中高效钠离子存储的碳包覆MoSTe纳米电缆

Carbon-coated MoSTe nanocables for efficient sodium-ion storage in non-aqueous dual-ion batteries.

作者信息

Liu Yangjie, Hu Xiang, Li Junwei, Zhong Guobao, Yuan Jun, Zhan Hongbing, Tang Yongbing, Wen Zhenhai

机构信息

College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.

CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.

出版信息

Nat Commun. 2022 Feb 3;13(1):663. doi: 10.1038/s41467-022-28176-0.

Abstract

Sodium-based dual-ion batteries have received increased attention owing to their appealing cell voltage (i.e., >3 V) and cost-effective features. However, the development of high-performance anode materials is one of the key elements for exploiting this electrochemical energy storage system at practical levels. Here, we report a source-template synthetic strategy for fabricating a variety of nanowire-in-nanotube MSTe@C (M = Mo, W, Re) structures with an in situ-grown carbon film coating, termed as nanocables. Among the various materials prepared, the MoSTe@C nanocables are investigated as negative electrode active material in combination with expanded graphite at the positive electrode and NaPF-based non-aqueous electrolyte solutions for dual-ion storage in coin cell configuration. As a result, the dual-ion lab-scale cells demonstrate a prolonged cycling lifespan with 97% capacity retention over 1500 cycles and a reversible capacity of about 101 mAh g at specific capacities (based on the mass of the anode) of 1.0 A g and 5.0 A g, respectively.

摘要

基于钠的双离子电池因其诱人的电池电压(即>3 V)和成本效益高的特点而受到越来越多的关注。然而,开发高性能负极材料是在实际层面开发这种电化学储能系统的关键要素之一。在此,我们报告了一种源模板合成策略,用于制备各种具有原位生长碳膜涂层的纳米管内纳米线MSTe@C(M = Mo、W、Re)结构,称为纳米电缆。在所制备的各种材料中,研究了MoSTe@C纳米电缆作为负极活性材料,与正极的膨胀石墨和用于硬币电池配置中双离子存储的基于NaPF的非水电解质溶液相结合。结果,双离子实验室规模的电池在1 A g和5 A g的特定容量(基于负极质量)下分别表现出延长的循环寿命,在1500次循环中容量保持率为97%,可逆容量约为101 mAh g。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a07/8814252/2b13b53e1900/41467_2022_28176_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验