Kwon Youngjin, Kim Jongsu, Kim Hojoong, Kang Tae Woog, Lee Jimin, Jang Seung Soon, Lee Yongkuk, Yeo Woon-Hong
Wearable Intelligent Systems and Healthcare Center (WISH Center), Institute for Matter and Systems, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Appl Mater Interfaces. 2024 Dec 11;16(49):68016-68026. doi: 10.1021/acsami.4c17939. Epub 2024 Nov 25.
Recent advancements in printing technologies allow for fabricating various wearable sensors, circuits, and integrated electronics. However, most printing tools have limited ranges of handling ink viscosity, a short working distance, and a limited feature size for developing sophisticated electronics. Here, this paper introduces an all-in-one integrated wearable electronic system via multilayer, multinanomaterial printing. Versatile, high-resolution aerosol-jet printing could successfully print Cu nanoparticles, Ag nanoparticles, PEDOT:PSS, and polyimide (PI) to manufacture nanomembrane composite structures, including skin-contact electrodes and wireless circuits. The printed polymer, PEDOT:PSS deposited on the Cu, ensures biocompatibility when making direct skin contact while enhancing electrical conductivity for electrodes. A self-assembled monolayer facilitates better adhesion of Cu nanoparticles on the PI. Also, using intensive pulsed light, a photonic sintering method minimizes Cu-oxidation while avoiding thermal damage. The combined experimental and computational study shows the mechanical flexibility and reliability of the printed integrated device. With human subjects, the flexible wireless bioelectronic system demonstrates superior performance in detecting high-fidelity physiological signals on the skin, including electromyograms, electrooculograms, electrocardiograms, and motions, proving its potential applications in portable human healthcare and persistent human-machine interfaces.
打印技术的最新进展使得制造各种可穿戴传感器、电路和集成电子产品成为可能。然而,大多数打印工具在处理油墨粘度方面的范围有限,工作距离较短,并且在开发复杂电子产品时特征尺寸有限。在此,本文通过多层、多纳米材料打印介绍了一种一体化集成可穿戴电子系统。通用的高分辨率气溶胶喷射打印能够成功打印铜纳米颗粒、银纳米颗粒、聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)和聚酰亚胺(PI),以制造纳米膜复合结构,包括皮肤接触电极和无线电路。沉积在铜上的印刷聚合物PEDOT:PSS在与皮肤直接接触时确保生物相容性,同时提高电极的导电性。自组装单分子层有助于铜纳米颗粒在PI上更好地附着。此外,使用强脉冲光,一种光子烧结方法可将铜氧化降至最低,同时避免热损伤。结合实验和计算研究表明了印刷集成器件的机械柔韧性和可靠性。在人体受试者身上,这种柔性无线生物电子系统在检测皮肤上的高保真生理信号(包括肌电图、眼电图、心电图和运动信号)方面表现出卓越性能,证明了其在便携式人体医疗保健和持久人机界面中的潜在应用价值。