Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA). Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain.
Departamento de Biotecnología y Biología Vegetal - Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, Avda. Complutense, Madrid, Spain.
J Exp Bot. 2019 Apr 12;70(7):2143-2155. doi: 10.1093/jxb/ery410.
To survive under water deficiency, plants alter gene expression patterns, make structural and physiological adjustments, and optimize the use of water. Rapid degradation and turnover of proteins is required for effective nutrient recycling. Here, we examined the transcriptional responses of the C1A cysteine protease family to drought in barley and found that four genes were up-regulated in stressed plants. Knock-down lines for the protease-encoding genes HvPap-1 and HvPap-19 showed unexpected changes in leaf cuticle thickness and stomatal pore area. The efficiency of photosystem II and the total amount of proteins were almost unaltered in stressed transgenic plants while both parameters decreased in stressed wild-type plants. Although the patterns of proteolytic activities in the knock-down lines did not change, the amino acid accumulation increased in response to drought, concomitant with a higher ABA content. Whilst jasmonic acid (JA) and JA-Ile concentrations increased in stressed leaves of the wild-type and the HvPap-1 knock-down lines, their levels were lower in the HvPap-19 knock-down lines, suggesting the involvement of a specific hormone interaction in the process. Our data indicate that the changes in leaf cuticle thickness and stomatal pore area had advantageous effects on leaf defense against fungal infection and mite feeding mediated by Magnaporthe oryzae and Tetranychus urticae, respectively.
为了在缺水条件下生存,植物会改变基因表达模式,进行结构和生理上的调整,并优化水的利用。快速降解和周转蛋白质是有效回收养分所必需的。在这里,我们研究了大麦干旱胁迫下 C1A 半胱氨酸蛋白酶家族的转录响应,发现有 4 个基因在胁迫植物中上调。蛋白酶编码基因 HvPap-1 和 HvPap-19 的敲低系表现出叶片角质层厚度和气孔孔径的异常变化。在胁迫转基因植物中,光系统 II 的效率和蛋白质总量几乎没有改变,而在胁迫野生型植物中这两个参数都降低了。尽管敲低系中的蛋白水解活性模式没有改变,但氨基酸积累量却增加了,这与 ABA 含量的增加有关。虽然在胁迫叶片中,野生型和 HvPap-1 敲低系中的茉莉酸(JA)和 JA-Ile 浓度增加,但在 HvPap-19 敲低系中它们的水平较低,表明在这个过程中存在特定的激素相互作用。我们的数据表明,叶片角质层厚度和气孔孔径的变化对水稻纹枯病菌和二斑叶螨介导的叶片防御真菌侵染和取食具有有利影响。