Department of Chemical Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15217 , United States.
J Chem Inf Model. 2018 Dec 24;58(12):2392-2400. doi: 10.1021/acs.jcim.8b00386. Epub 2018 Dec 7.
The rising application of informatics and data science tools for studying inorganic crystals and small molecules has revolutionized approaches to materials discovery and driven the development of accurate machine learning structure/property relationships. We discuss how informatics tools can accelerate research, and we present various combinations of workflows, databases, and surrogate models in the literature. This paradigm has been slower to infiltrate the catalysis community due to larger configuration spaces, difficulty in describing necessary calculations, and thermodynamic/kinetic quantities that require many interdependent calculations. We present our own informatics tool that uses dynamic dependency graphs to share, organize, and schedule calculations to enable new, flexible research workflows in surface science. This approach is illustrated for the large-scale screening of intermetallic surfaces for electrochemical catalyst activity. Similar approaches will be important to bring the benefits of informatics and data science to surface science research. Lastly, we provide our perspective on when to use these tools and considerations when creating them.
信息学和数据科学工具在研究无机晶体和小分子方面的应用日益广泛,这彻底改变了材料发现的方法,并推动了准确的机器学习结构/性质关系的发展。我们讨论了信息学工具如何加速研究,并介绍了文献中各种工作流程、数据库和替代模型的组合。由于配置空间更大、难以描述必要的计算以及需要许多相互依赖的计算才能获得热力学/动力学参数,这种范例在催化领域的渗透速度较慢。我们介绍了自己的信息学工具,该工具使用动态依赖关系图来共享、组织和安排计算,以实现表面科学中灵活的新研究工作流程。这种方法已用于大规模筛选电化学催化剂活性的金属间表面。类似的方法对于将信息学和数据科学的优势引入表面科学研究将非常重要。最后,我们提供了对何时使用这些工具以及在创建这些工具时应考虑的因素的看法。