Suppr超能文献

结合 VAR 和降维方法提高对网络动态的洞察和预测。

Improved Insight into and Prediction of Network Dynamics by Combining VAR and Dimension Reduction.

机构信息

a KU Leuven, University of Leuven.

b Humboldt University Berlin.

出版信息

Multivariate Behav Res. 2018 Nov-Dec;53(6):853-875. doi: 10.1080/00273171.2018.1516540. Epub 2018 Nov 19.

Abstract

To understand within-person psychological processes, one may fit VAR(1) models (or continuous-time variants thereof) to multivariate time series and display the VAR(1) coefficients as a network. This approach has two major problems. First, the contemporaneous correlations between the variables will frequently be substantial, yielding multicollinearity issues. In addition, the shared effects of the variables are not included in the network. Consequently, VAR(1) networks can be hard to interpret. Second, crossvalidation results show that the highly parametrized VAR(1) model is prone to overfitting. In this article, we compare the pros and cons of two potential solutions to both problems. The first is to impose a lasso penalty on the VAR(1) coefficients, setting some of them to zero. The second, which has not yet been pursued in psychological network analysis, uses principal component VAR(1) (termed PC-VAR(1)). In this approach, the variables are first reduced to a few principal components, which are rotated toward simple structure; then VAR(1) analysis (or a continuous-time analog) is applied to the rotated components. Reanalyzing the data of a single participant of the COGITO study, we show that PC-VAR(1) has the better predictive performance and that networks based on PC-VAR(1) clearly represent both the lagged and the contemporaneous variable relations.

摘要

为了理解个体内的心理过程,人们可以将 VAR(1) 模型(或其连续时间变体)拟合到多元时间序列中,并将 VAR(1) 系数显示为网络。这种方法有两个主要问题。首先,变量之间的同期相关性通常会很大,导致多重共线性问题。此外,变量的共享效应不包含在网络中。因此,VAR(1) 网络可能难以解释。其次,交叉验证结果表明,高度参数化的 VAR(1) 模型容易过度拟合。在本文中,我们比较了两种潜在解决方案的优缺点,这两种解决方案都可以解决这两个问题。第一种方法是对 VAR(1) 系数施加 LASSO 惩罚,将其中一些系数设置为零。第二种方法尚未在心理网络分析中应用,它使用主成分 VAR(1)(称为 PC-VAR(1))。在这种方法中,首先将变量减少到几个主成分,然后对这些主成分进行旋转以实现简单结构;然后对旋转后的成分应用 VAR(1)分析(或连续时间模拟)。重新分析 COGITO 研究的单个参与者的数据,我们表明 PC-VAR(1) 具有更好的预测性能,并且基于 PC-VAR(1) 的网络清楚地表示了滞后和同期变量关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验