Suppr超能文献

可视化医疗保险处方模式的全国性差异。

Visualizing nationwide variation in medicare Part D prescribing patterns.

机构信息

Rochester Center for Health Informatics at the University of Rochester Medical Center, 265 Crittenden Blvd - 1.207, Rochester, 14642, NY, USA.

University of Alabama Birmingham, Düsternbrooker Weg 20, Birmingham, 14642, AL, USA.

出版信息

BMC Med Inform Decis Mak. 2018 Nov 19;18(1):103. doi: 10.1186/s12911-018-0670-2.

Abstract

BACKGROUND

To characterize the regional and national variation in prescribing patterns in the Medicare Part D program using dimensional reduction visualization methods.

METHODS

Using publicly available Medicare Part D claims data, we identified and visualized regional and national provider prescribing profile variation with unsupervised clustering and t-distributed stochastic neighbor embedding (t-SNE) dimensional reduction techniques. Additionally, we examined differences between regionally representative prescribing patterns for major metropolitan areas.

RESULTS

Distributions of prescribing volume and medication diversity were highly skewed among over 800,000 Medicare Part D providers. Medical specialties had characteristic prescribing patterns. Although the number of Medicare providers in each state was highly correlated with the number of Medicare Part D enrollees, some states were enriched for providers with > 10,000 prescription claims annually. Dimension-reduction, hierarchical clustering and t-SNE visualization of drug- or drug-class prescribing patterns revealed that providers cluster strongly based on specialty and sub-specialty, with large regional variations in prescribing patterns. Major metropolitan areas had distinct prescribing patterns that tended to group by major geographical divisions.

CONCLUSIONS

This work demonstrates that unsupervised clustering, dimension-reduction and t-SNE visualization can be used to analyze and visualize variation in provider prescribing patterns on a national level across thousands of medications, revealing substantial prescribing variation both between and within specialties, regionally, and between major metropolitan areas. These methods offer an alternative system-wide and pattern-centric view of such data for hypothesis generation, visualization, and pattern identification.

摘要

背景

使用降维可视化方法来描述医疗保险处方药计划中处方模式的区域和全国差异。

方法

使用公开的医疗保险处方药索赔数据,我们使用无监督聚类和 t 分布随机邻域嵌入(t-SNE)降维技术识别和可视化区域和全国范围内的提供者处方特征差异。此外,我们还检查了主要大都市区之间区域代表性处方模式的差异。

结果

在超过 80 万名医疗保险处方药提供者中,处方量和药物多样性的分布高度偏态。医学专业具有独特的处方模式。尽管每个州的医疗保险提供者数量与医疗保险处方药参保人数高度相关,但有些州的每年有超过 10000 张处方的提供者数量丰富。药物或药物类别处方模式的降维、层次聚类和 t-SNE 可视化表明,提供者主要根据专业和亚专业进行聚类,处方模式存在较大的区域差异。主要大都市区有独特的处方模式,倾向于按主要地理区域分组。

结论

这项工作表明,无监督聚类、降维和 t-SNE 可视化可用于分析和可视化全国范围内数千种药物的提供者处方模式的变化,揭示了专业之间、专业内部、区域之间以及主要大都市区之间的大量处方变化。这些方法为假设生成、可视化和模式识别提供了一种替代的全系统和以模式为中心的此类数据视图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae3d/6245567/bb53a2895982/12911_2018_670_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验