Abdelmoula Walid M, Balluff Benjamin, Englert Sonja, Dijkstra Jouke, Reinders Marcel J T, Walch Axel, McDonnell Liam A, Lelieveldt Boudewijn P F
Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, 6200 MD Maastricht, The Netherlands.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12244-12249. doi: 10.1073/pnas.1510227113. Epub 2016 Oct 10.
The identification of tumor subpopulations that adversely affect patient outcomes is essential for a more targeted investigation into how tumors develop detrimental phenotypes, as well as for personalized therapy. Mass spectrometry imaging has demonstrated the ability to uncover molecular intratumor heterogeneity. The challenge has been to conduct an objective analysis of the resulting data to identify those tumor subpopulations that affect patient outcome. Here we introduce spatially mapped t-distributed stochastic neighbor embedding (t-SNE), a nonlinear visualization of the data that is able to better resolve the biomolecular intratumor heterogeneity. In an unbiased manner, t-SNE can uncover tumor subpopulations that are statistically linked to patient survival in gastric cancer and metastasis status in primary tumors of breast cancer.
识别对患者预后产生不利影响的肿瘤亚群,对于更有针对性地研究肿瘤如何形成有害表型以及进行个性化治疗至关重要。质谱成像已证明有能力揭示肿瘤内部分子异质性。挑战在于对所得数据进行客观分析,以识别那些影响患者预后的肿瘤亚群。在此,我们引入空间映射的t分布随机邻域嵌入(t-SNE),这是一种数据的非线性可视化方法,能够更好地解析肿瘤内生物分子异质性。t-SNE能够以无偏倚的方式揭示与胃癌患者生存率以及乳腺癌原发肿瘤转移状态具有统计学关联的肿瘤亚群。