Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA.
J Biol Chem. 2013 Jun 14;288(24):17111-21. doi: 10.1074/jbc.M112.447326. Epub 2013 Apr 26.
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.
PKA 通过其调节型 II(RII)亚基与蛋白激酶锚定蛋白(AKAP)的结合而保留在不同的亚细胞环境中。普遍用于破坏 PKA 锚定的传统试剂是基于保守的 AKAP 基序设计的。我们引入了一种噬菌体选择程序,该程序利用高分辨率结构信息来设计对特定 AKAP 具有选择性的 RII 突变体。通过竞争性筛选,针对八种 AKAP 获得了选择性 RII(RSelect)序列。生化和基于细胞的实验验证了 RSelect 蛋白在 AKAP2 和 AKAP18 中的功效。这些工程蛋白代表了一类新的试剂,可用于剖析不同 AKAP 靶向的 PKA 池的贡献。分子建模和高通量测序分析揭示了 AKAP 选择性相互作用的分子基础,并为天然 RII-AKAP 相互作用提供了新的见解。我们提出,这种基于结构的进化策略可能普遍适用于其他蛋白质相互作用表面的研究。