Suppr超能文献

饮食诱导的高胰岛素血症是良性前列腺增生症和原发性高血压病因学中的关键因素吗?

Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension?

作者信息

Kopp Wolfgang

机构信息

Former head of the Diagnostikzentrum Graz, Graz, Austria.

出版信息

Nutr Metab Insights. 2018 May 8;11:1178638818773072. doi: 10.1177/1178638818773072. eCollection 2018.

Abstract

Benign prostatic hyperplasia and hypertension are common age-related comorbidities. Although the etiology of benign prostatic hyperplasia (BPH) is still largely unresolved and poorly understood, a significant age-independent association was found between BPH and hypertension, indicating a common pathophysiological factor for both diseases. It has previously been suggested that the development of essential hypertension may be related to diet-induced hyperinsulinemia. This study follows the question, whether BPH may develop due to the same mechanism, thereby explaining the well-known comorbidity of these 2 disorders. The scientific evidence presented shows that BPH and hypertension share the same pathophysiological changes, with hyperinsulinemia as the driving force. It further shows that significant dietary changes during human history cause disruption of a finely tuned metabolic balance that has evolved over millions of years of evolution: high-insulinemic food, typical of current "Western" diets, has the potential to cause hyperinsulinemia and insulin resistance, as well as an abnormally increased activation of the sympathetic nervous system and the renin-angiotensin-aldosterone system, alterations that play a pivotal role in the pathogenesis of BPH and hypertension.

摘要

良性前列腺增生和高血压是常见的与年龄相关的合并症。尽管良性前列腺增生(BPH)的病因在很大程度上仍未得到解决且了解不足,但在BPH与高血压之间发现了一种与年龄无关的显著关联,这表明这两种疾病存在共同的病理生理因素。此前曾有人提出,原发性高血压的发生可能与饮食诱导的高胰岛素血症有关。本研究探讨了BPH是否可能由于相同的机制而发生,从而解释这两种疾病众所周知的合并症。所提供的科学证据表明,BPH和高血压具有相同的病理生理变化,高胰岛素血症是驱动力。它进一步表明,人类历史上显著的饮食变化导致了经过数百万年进化而形成的精细调节的代谢平衡被打破:当前“西方”饮食典型的高胰岛素血症食物有可能导致高胰岛素血症和胰岛素抵抗,以及交感神经系统和肾素-血管紧张素-醛固酮系统的异常激活增加,这些改变在BPH和高血压的发病机制中起关键作用。

相似文献

1
Diet-Induced Hyperinsulinemia as a Key Factor in the Etiology of Both Benign Prostatic Hyperplasia and Essential Hypertension?
Nutr Metab Insights. 2018 May 8;11:1178638818773072. doi: 10.1177/1178638818773072. eCollection 2018.
2
Pathogenesis and etiology of essential hypertension: role of dietary carbohydrate.
Med Hypotheses. 2005;64(4):782-7. doi: 10.1016/j.mehy.2004.10.009.
3
How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases.
Diabetes Metab Syndr Obes. 2019 Oct 24;12:2221-2236. doi: 10.2147/DMSO.S216791. eCollection 2019.
4
Benign prostatic hyperplasia: dietary and metabolic risk factors.
Int Urol Nephrol. 2008;40(3):649-56. doi: 10.1007/s11255-008-9333-z. Epub 2008 Feb 2.
6
Insulin-resistance and benign prostatic hyperplasia: the connection.
Eur J Pharmacol. 2010 Sep 1;641(2-3):75-81. doi: 10.1016/j.ejphar.2010.05.042. Epub 2010 Jun 9.
7
Components of the metabolic syndrome-risk factors for the development of benign prostatic hyperplasia.
Prostate Cancer Prostatic Dis. 1998 Mar;1(3):157-162. doi: 10.1038/sj.pcan.4500221.
8
Hyperinsulinemia and dyslipidemia in non-diabetic benign prostatic hyperplasia.
Clin Chim Acta. 2006 Aug;370(1-2):89-93. doi: 10.1016/j.cca.2006.01.019. Epub 2006 Mar 3.
9
Association of hypertension with symptoms of benign prostatic hyperplasia.
J Urol. 2004 Oct;172(4 Pt 1):1390-3. doi: 10.1097/01.ju.0000139995.85780.d8.

引用本文的文献

1
Risk factors for benign prostatic hyperplasia: a comprehensive review.
Rev Assoc Med Bras (1992). 2025 Jul 7;71(6):e20250343. doi: 10.1590/1806-9282.20250343. eCollection 2025.
2
Role of innate immunity in SARS-CoV-2 infection.
Biosaf Health. 2023 Sep 9;5(5):280-288. doi: 10.1016/j.bsheal.2023.08.005. eCollection 2023 Oct.
3
Aging and "Age-Related" Diseases - What Is the Relation?
Aging Dis. 2024 Jun 28;16(3):1316-1346. doi: 10.14336/AD.2024.0570.
4
Gestational exposure to the great Chinese famine: early life undernutrition impact on prostatic hyperplasia in adulthood.
Front Nutr. 2024 Jun 20;11:1391974. doi: 10.3389/fnut.2024.1391974. eCollection 2024.
5
Evaluating the Impact of Benign Prostatic Hyperplasia Surgical Treatments on Sexual Health.
Biomedicines. 2024 Jan 5;12(1):110. doi: 10.3390/biomedicines12010110.

本文引用的文献

1
Testosterone-induced benign prostatic hyperplasia rat and dog as facile models to assess drugs targeting lower urinary tract symptoms.
PLoS One. 2018 Jan 19;13(1):e0191469. doi: 10.1371/journal.pone.0191469. eCollection 2018.
2
Metabolic syndrome and benign prostatic hyperplasia: An update.
Asian J Urol. 2017 Jul;4(3):164-173. doi: 10.1016/j.ajur.2017.05.001. Epub 2017 May 25.
3
Pathophysiology of benign prostate enlargement and lower urinary tract symptoms: Current concepts.
Tzu Chi Med J. 2017 Apr-Jun;29(2):79-83. doi: 10.4103/tcmj.tcmj_20_17.
4
The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance.
Biochim Biophys Acta Mol Basis Dis. 2017 May;1863(5):1106-1114. doi: 10.1016/j.bbadis.2016.07.019. Epub 2016 Aug 4.
5
Male Lower Urinary Tract Symptoms and Cardiovascular Events: A Systematic Review and Meta-analysis.
Eur Urol. 2016 Nov;70(5):788-796. doi: 10.1016/j.eururo.2016.07.007. Epub 2016 Jul 20.
8
Western-style diet induces insulin insensitivity and hyperactivity in adolescent male rats.
Physiol Behav. 2015 Nov 1;151:147-54. doi: 10.1016/j.physbeh.2015.07.023. Epub 2015 Jul 17.
9
A major role of insulin in promoting obesity-associated adipose tissue inflammation.
Mol Metab. 2015 May 1;4(7):507-18. doi: 10.1016/j.molmet.2015.04.003. eCollection 2015 Jul.
10
Challenging the Inevitability of Prostate Enlargement: Low Levels of Benign Prostatic Hyperplasia Among Tsimane Forager-Horticulturalists.
J Gerontol A Biol Sci Med Sci. 2015 Oct;70(10):1262-8. doi: 10.1093/gerona/glv051. Epub 2015 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验