Suppr超能文献

卫生领域的优先事项设定:为新西兰怀卡托地区人群开发和应用多标准算法

Priority setting in health: development and application of a multi-criteria algorithm for the population of New Zealand's Waikato region.

作者信息

Dayalu Rashmi, Cafiero-Fonseca Elizabeth T, Fan Victoria Y, Schofield Heather, Bloom David E

机构信息

1Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, USA.

Performance Analysis and Improvement, Massachusetts General Hospital/Massachusetts General Physicians Organization, Boston, USA.

出版信息

Cost Eff Resour Alloc. 2018 Nov 9;16(Suppl 1):52. doi: 10.1186/s12962-018-0121-z. eCollection 2018.

Abstract

BACKGROUND

Priority setting in a climate of diverse needs and limited resources is one of the most significant challenges faced by health care policymakers. This paper develops and applies a comprehensive multi-criteria algorithm to help determine the relative importance of health conditions that affect a defined population.

METHODS

Our algorithm is implemented in the context of the Waikato District Health Board (WDHB) in New Zealand, which serves approximately 10% of the New Zealand population. Strategic priorities of the WDHB are operationalized into five criteria along which the algorithm is structured-scale of disease, household financial impact of disease, health equity, cost-effectiveness, and multimorbidity burden. Using national-level data and published literature from New Zealand, the World Health Organization, and other high-income Commonwealth countries, 25 health conditions in Waikato are identified and mapped to these five criteria. These disease-criteria mappings are weighted with data from an ordered choice survey administered to the general public of the Waikato region. The resulting output of health conditions ranked in order of relative importance is validated against an explicit list of health concerns, provided by the survey respondents.

RESULTS

Heart disease and cancerous disorders are assigned highest priority rankings according to both the algorithm and the survey data, suggesting that our model is aligned with the primary health concerns of the general public. All five criteria are weighted near-equal across survey respondents, though the average health equity preference score is 9.2% higher for Māori compared to non-Māori respondents. Older respondents (50 years and above) ranked issues of multimorbidity 4.2% higher than younger respondents.

CONCLUSIONS

Health preferences of the general population can be elicited using ordered-choice surveys and can be used to weight data for health conditions across multiple criteria, providing policymakers with a practical tool to inform which health conditions deserve the most attention. Our model connects public health strategic priorities, the health impacts and financial costs of particular health conditions, and the underlying preferences of the general public. We illustrate a practical approach to quantifying the foundational criteria that drive public preferences, for the purpose of relevant, legitimate, and evidence-based priority setting in health.

摘要

背景

在需求多样且资源有限的情况下确定优先事项,是医疗保健政策制定者面临的最重大挑战之一。本文开发并应用了一种全面的多标准算法,以帮助确定影响特定人群的健康状况的相对重要性。

方法

我们的算法是在新西兰怀卡托地区卫生委员会(WDHB)的背景下实施的,该委员会服务于约10%的新西兰人口。WDHB的战略重点被转化为五个标准,算法围绕这些标准构建——疾病规模、疾病对家庭的经济影响、健康公平性、成本效益和共病负担。利用新西兰、世界卫生组织和其他高收入英联邦国家的国家级数据和已发表文献,确定了怀卡托地区的25种健康状况,并将其映射到这五个标准。这些疾病-标准映射通过对怀卡托地区公众进行的有序选择调查的数据进行加权。根据调查对象提供的明确健康问题清单,验证按相对重要性排序的健康状况的最终输出结果。

结果

根据算法和调查数据,心脏病和癌症疾病被赋予最高优先级排名,这表明我们的模型与公众的主要健康关注点一致。在所有调查对象中,所有五个标准的权重几乎相等,不过毛利受访者的健康公平性偏好平均得分比非毛利受访者高9.2%。年龄较大的受访者(50岁及以上)对共病问题的排名比年轻受访者高4.2%。

结论

可以使用有序选择调查来了解普通人群的健康偏好,并可用于对多个标准下健康状况的数据进行加权,为政策制定者提供一个实用工具,以告知哪些健康状况最值得关注。我们的模型将公共卫生战略重点、特定健康状况的健康影响和财务成本以及公众的潜在偏好联系起来。我们展示了一种量化驱动公众偏好的基础标准的实用方法,以便在卫生领域进行相关、合理且基于证据的优先事项设定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/444a/6225550/284caa5ae8b5/12962_2018_121_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验