Suppr超能文献

基于卷积神经网络的磁共振成像图像分析用于从轻度认知障碍预测阿尔茨海默病

Convolutional Neural Networks-Based MRI Image Analysis for the Alzheimer's Disease Prediction From Mild Cognitive Impairment.

作者信息

Lin Weiming, Tong Tong, Gao Qinquan, Guo Di, Du Xiaofeng, Yang Yonggui, Guo Gang, Xiao Min, Du Min, Qu Xiaobo

机构信息

College of Physics and Information Engineering, Fuzhou University, Fuzhou, China.

School of Opto-Electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China.

出版信息

Front Neurosci. 2018 Nov 5;12:777. doi: 10.3389/fnins.2018.00777. eCollection 2018.

Abstract

Mild cognitive impairment (MCI) is the prodromal stage of Alzheimer's disease (AD). Identifying MCI subjects who are at high risk of converting to AD is crucial for effective treatments. In this study, a deep learning approach based on convolutional neural networks (CNN), is designed to accurately predict MCI-to-AD conversion with magnetic resonance imaging (MRI) data. First, MRI images are prepared with age-correction and other processing. Second, local patches, which are assembled into 2.5 dimensions, are extracted from these images. Then, the patches from AD and normal controls (NC) are used to train a CNN to identify deep learning features of MCI subjects. After that, structural brain image features are mined with FreeSurfer to assist CNN. Finally, both types of features are fed into an extreme learning machine classifier to predict the AD conversion. The proposed approach is validated on the standardized MRI datasets from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. This approach achieves an accuracy of 79.9% and an area under the receiver operating characteristic curve (AUC) of 86.1% in leave-one-out cross validations. Compared with other state-of-the-art methods, the proposed one outperforms others with higher accuracy and AUC, while keeping a good balance between the sensitivity and specificity. Results demonstrate great potentials of the proposed CNN-based approach for the prediction of MCI-to-AD conversion with solely MRI data. Age correction and assisted structural brain image features can boost the prediction performance of CNN.

摘要

轻度认知障碍(MCI)是阿尔茨海默病(AD)的前驱阶段。识别出有高风险转化为AD的MCI患者对于有效治疗至关重要。在本研究中,设计了一种基于卷积神经网络(CNN)的深度学习方法,以利用磁共振成像(MRI)数据准确预测MCI向AD的转化。首先,对MRI图像进行年龄校正和其他处理。其次,从这些图像中提取组装成2.5维的局部图像块。然后,使用来自AD患者和正常对照(NC)的图像块训练CNN,以识别MCI患者的深度学习特征。之后,利用FreeSurfer挖掘大脑结构图像特征以辅助CNN。最后,将这两种类型的特征输入到极限学习机分类器中以预测AD转化。所提出的方法在阿尔茨海默病神经成像计划(ADNI)项目的标准化MRI数据集中得到了验证。在留一法交叉验证中,该方法的准确率达到79.9%,受试者工作特征曲线下面积(AUC)为86.1%。与其他现有最先进方法相比,所提出的方法在保持敏感性和特异性良好平衡的同时,以更高的准确率和AUC优于其他方法。结果表明,所提出的基于CNN的方法在仅使用MRI数据预测MCI向AD转化方面具有巨大潜力。年龄校正和辅助大脑结构图像特征可以提高CNN的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7242/6231297/c48bef23a287/fnins-12-00777-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验