文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于结构磁共振和 FDG-PET 图像的阿尔茨海默病早期诊断的多模态和多尺度深度神经网络。

Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

机构信息

School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6, Canada.

出版信息

Sci Rep. 2018 Apr 9;8(1):5697. doi: 10.1038/s41598-018-22871-z.


DOI:10.1038/s41598-018-22871-z
PMID:29632364
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5890270/
Abstract

Alzheimer's Disease (AD) is a progressive neurodegenerative disease where biomarkers for disease based on pathophysiology may be able to provide objective measures for disease diagnosis and staging. Neuroimaging scans acquired from MRI and metabolism images obtained by FDG-PET provide in-vivo measurements of structure and function (glucose metabolism) in a living brain. It is hypothesized that combining multiple different image modalities providing complementary information could help improve early diagnosis of AD. In this paper, we propose a novel deep-learning-based framework to discriminate individuals with AD utilizing a multimodal and multiscale deep neural network. Our method delivers 82.4% accuracy in identifying the individuals with mild cognitive impairment (MCI) who will convert to AD at 3 years prior to conversion (86.4% combined accuracy for conversion within 1-3 years), a 94.23% sensitivity in classifying individuals with clinical diagnosis of probable AD, and a 86.3% specificity in classifying non-demented controls improving upon results in published literature.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,基于病理生理学的疾病生物标志物可能能够为疾病的诊断和分期提供客观的衡量标准。从 MRI 获得的神经影像学扫描和 FDG-PET 获得的代谢图像为活体大脑的结构和功能(葡萄糖代谢)提供了体内测量。假设结合提供互补信息的多种不同成像方式可能有助于提高 AD 的早期诊断。在本文中,我们提出了一种新的基于深度学习的框架,利用多模态和多尺度深度神经网络来区分 AD 患者。我们的方法在识别将在转换前 3 年内转化为 AD 的轻度认知障碍(MCI)个体方面的准确率为 82.4%(1-3 年内转换的综合准确率为 86.4%),在分类具有可能 AD 临床诊断的个体方面的灵敏度为 94.23%,在分类非痴呆对照者方面的特异性为 86.3%,优于已发表文献中的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/c5b689ffe8a2/41598_2018_22871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/a0c12e356814/41598_2018_22871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/669becd059d4/41598_2018_22871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/c961e373f05f/41598_2018_22871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/07003d8d681a/41598_2018_22871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/c5b689ffe8a2/41598_2018_22871_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/a0c12e356814/41598_2018_22871_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/669becd059d4/41598_2018_22871_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/c961e373f05f/41598_2018_22871_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/07003d8d681a/41598_2018_22871_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd2e/5890270/c5b689ffe8a2/41598_2018_22871_Fig5_HTML.jpg

相似文献

[1]
Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer's Disease using structural MR and FDG-PET images.

Sci Rep. 2018-4-9

[2]
Multimodal Discrimination of Alzheimer's Disease Based on Regional Cortical Atrophy and Hypometabolism.

PLoS One. 2015-6-10

[3]
Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer's disease.

Med Image Anal. 2018-2-21

[4]
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.

Neuroimage. 2019-1-14

[5]
Effects of imaging modalities, brain atlases and feature selection on prediction of Alzheimer's disease.

J Neurosci Methods. 2015-12-30

[6]
Multi-Modality Sparse Representation for Alzheimer's Disease Classification.

J Alzheimers Dis. 2018

[7]
Distinct subtypes of spatial brain metabolism patterns in Alzheimer's disease identified by deep learning-based FDG PET clusters.

Eur J Nucl Med Mol Imaging. 2024-1

[8]
Prediction of Progressive Mild Cognitive Impairment by Multi-Modal Neuroimaging Biomarkers.

J Alzheimers Dis. 2016

[9]
Deep learning based diagnosis of Alzheimer's disease using FDG-PET images.

Neurosci Lett. 2023-11-20

[10]
Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

J Alzheimers Dis. 2017

引用本文的文献

[1]
Alzheimer's disease recognition via long-range state space model using multi-modal brain images.

Front Neurosci. 2025-5-19

[2]
FDG-PET Image Classification in Alzheimer's Disease: from Traditional Visual Analysis to Advanced Transfer Learning.

Nucl Med Mol Imaging. 2025-6

[3]
Role of artificial intelligence in early identification and risk evaluation of non-communicable diseases: a bibliometric analysis of global research trends.

BMJ Open. 2025-5-2

[4]
Machine learning-enhanced screening funnel for clinical trials in Alzheimer's disease.

Alzheimers Dement (N Y). 2025-4-24

[5]
Quantitative magnetic resonance imaging in Alzheimer's disease: a narrative review.

Quant Imaging Med Surg. 2025-4-1

[6]
Integration of multimodal imaging data with machine learning for improved diagnosis and prognosis in neuroimaging.

Front Hum Neurosci. 2025-3-21

[7]
AD-Diff: enhancing Alzheimer's disease prediction accuracy through multimodal fusion.

Front Comput Neurosci. 2025-3-12

[8]
Machine-learning models for Alzheimer's disease diagnosis using neuroimaging data: survey, reproducibility, and generalizability evaluation.

Brain Inform. 2025-3-21

[9]
Reducing inference cost of Alzheimer's disease identification using an uncertainty-aware ensemble of uni-modal and multi-modal learners.

Sci Rep. 2025-2-14

[10]
Multimodal Alzheimer's disease classification through ensemble deep random vector functional link neural network.

PeerJ Comput Sci. 2024-12-13

本文引用的文献

[1]
A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer's Disease Diagnosis.

Sci Rep. 2017-3-30

[2]
Prediction of Mild Cognitive Impairment Conversion Using a Combination of Independent Component Analysis and the Cox Model.

Front Hum Neurosci. 2017-2-6

[3]
Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer's disease.

Sci Rep. 2017-1-12

[4]
Predicting Progression from Mild Cognitive Impairment to Alzheimer's Dementia Using Clinical, MRI, and Plasma Biomarkers via Probabilistic Pattern Classification.

PLoS One. 2016-2-22

[5]
A novel relational regularization feature selection method for joint regression and classification in AD diagnosis.

Med Image Anal. 2015-11-10

[6]
Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment.

Comput Methods Programs Biomed. 2015-8-10

[7]
Domain Transfer Learning for MCI Conversion Prediction.

IEEE Trans Biomed Eng. 2015-7

[8]
Thickness network features for prognostic applications in dementia.

Neurobiol Aging. 2015-1

[9]
Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease.

IEEE Trans Biomed Eng. 2015-4

[10]
Machine learning framework for early MRI-based Alzheimer's conversion prediction in MCI subjects.

Neuroimage. 2015-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索