Suppr超能文献

用于阿尔茨海默病数据中信息性实例选择的新型海马体中心方法。

Novel hippocampus-centered methodology for informative instance selection in Alzheimer's disease data.

作者信息

Castro-Silva Juan A, Moreno-García María N, Guachi-Guachi Lorena, Peluffo-Ordóñez Diego H

机构信息

Universidad de Salamanca, Salamanca, Spain.

Universidad Surcolombiana, Neiva, Colombia.

出版信息

Heliyon. 2024 Sep 19;10(19):e37552. doi: 10.1016/j.heliyon.2024.e37552. eCollection 2024 Oct 15.

Abstract

The quantity and quality of a dataset play a crucial role in the performance of prediction models. Increasing the amount of data increases the computational requirements and can introduce negligible variations, outliers, and noise. These significantly impact the model performance. Thus, instance selection techniques are crucial for building prediction models with informative data, reducing the dataset size, improving performance, and minimizing computational costs. This study proposed a novel methodology for identifying the most informative two-dimensional slices derived from magnetic resonance imaging (MRI) to study Alzheimer's disease. The efficacy of our methodology was attributable to a hippocampus-centered analysis using data from multiple atlases. The methodology was evaluated by constructing convolutional neural networks to identify Alzheimer's disease, using a consolidated dataset constructed from three standard datasets: Alzheimer's Disease Neuroimaging Initiative, Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing, and Open Access Series of Imaging Studies. The proposed methodology demonstrated a commendable subject-level classification accuracy of approximately when distinguishing between normal cognition and Alzheimer's.

摘要

数据集的数量和质量对预测模型的性能起着至关重要的作用。增加数据量会增加计算需求,并可能引入可忽略不计的变化、异常值和噪声。这些会显著影响模型性能。因此,实例选择技术对于构建具有信息性数据的预测模型、减小数据集大小、提高性能以及最小化计算成本至关重要。本研究提出了一种新颖的方法,用于识别源自磁共振成像(MRI)的最具信息性的二维切片,以研究阿尔茨海默病。我们方法的有效性归因于使用来自多个图谱的数据进行以海马体为中心的分析。通过构建卷积神经网络来识别阿尔茨海默病,使用从三个标准数据集构建的合并数据集对该方法进行了评估:阿尔茨海默病神经影像倡议、澳大利亚衰老成像、生物标志物与生活方式旗舰研究以及开放获取影像研究系列。在区分正常认知和阿尔茨海默病时,所提出的方法展示了约 的值得称赞的个体水平分类准确率。 (注:原文中“approximately ”处似乎缺失具体数值)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb4/11456841/95676ba648fd/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验