Department of Clinical Pharmacology Tokai University School of Medicine Isehara Japan.
Faculty of Informatics Shizuoka University Hamamatsu Shizuoka Japan.
Pharmacol Res Perspect. 2018 Nov 11;6(6):e00435. doi: 10.1002/prp2.435. eCollection 2018 Dec.
To investigate consistency in summaries of product characteristics (SmPCs) of generic antimicrobials, we used natural language processing (NLP) to analyze and compare large amounts of text quantifying consistency between original and generic SmPCs. We manually compared each section of generic and original SmPCs for antimicrobials listed in the electronic Medicines Compendium in the United Kingdom, focusing on omissions and additions of clinically significant information (CSI). Independently, we quantified differences between the original and generic SmPCs using Kachako, a fully automatic NLP platform. Among the 137 antimicrobials listed in the electronic Medicines Compendium, we identified 193 pairs of original and generic antimicrobial SmPCs for the 48 antimicrobials for which generic SmPCs existed. Of these 193 pairs, 157 (81%) were consistent and 36 were inconsistent with the original SmPC. When the cut-off value of RATE (the index of similarity between two SmPCs) was set at 0.860, our NLP system effectively discriminated consistent generic SmPCs with a specificity of 100% and a sensitivity of 61%. We observed CSI omissions but not additions in the SmPC subsection related to pharmacokinetic properties. CSI additions but not omissions were found in the subsections dealing with therapeutic indications and fertility, pregnancy and lactation. Despite regulatory guidance, we observed substantial inconsistencies in the information in the United Kingdom SmPCs for antimicrobials. NLP technology proved to be a useful tool for checking large numbers of SmPCs for consistency.
为了研究仿制药说明书(SmPC)摘要的一致性,我们使用自然语言处理(NLP)技术分析和比较了大量文本,以量化原始仿制药 SmPC 与原始 SmPC 之间的一致性。我们对英国电子药品汇编中列出的抗生素的仿制药和原始 SmPC 的每个部分进行了手动比较,重点关注遗漏和添加具有临床意义的信息(CSI)。我们使用 Kachako(一个完全自动化的 NLP 平台)独立量化了原始 SmPC 和仿制药 SmPC 之间的差异。在电子药品汇编中列出的 137 种抗生素中,我们确定了 48 种存在仿制药 SmPC 的抗生素中 193 对原始和仿制药抗生素 SmPC。在这 193 对中,有 157 对(81%)与原始 SmPC 一致,36 对不一致。当 RATE(两个 SmPC 之间相似性的指标)的截断值设置为 0.860 时,我们的 NLP 系统能够以 100%的特异性和 61%的敏感性有效地识别出一致的仿制药 SmPC。我们观察到与药代动力学特性相关的 SmPC 小节中存在 CSI 遗漏,但不存在添加。在与治疗指征和生育、怀孕和哺乳相关的小节中,发现了 CSI 添加但没有遗漏。尽管有监管指导,但我们观察到英国抗生素 SmPC 中的信息存在大量不一致。NLP 技术被证明是检查大量 SmPC 一致性的有用工具。