Suppr超能文献

超高分辨率显微镜可视化空间表观基因组学的指南。

A guide to visualizing the spatial epigenome with super-resolution microscopy.

机构信息

Biomedical Optical Imaging Laboratory, Departments of Medicine and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

FEBS J. 2019 Aug;286(16):3095-3109. doi: 10.1111/febs.14938. Epub 2019 Jun 5.

Abstract

Genomic DNA in eukaryotic cells is tightly compacted with histone proteins into nucleosomes, which are further packaged into the higher-order chromatin structure. The physical structuring of chromatin is highly dynamic and regulated by a large number of epigenetic modifications in response to various environmental exposures, both in normal development and pathological processes such as aging and cancer. Higher-order chromatin structure has been indirectly inferred by conventional bulk biochemical assays on cell populations, which do not allow direct visualization of the spatial information of epigenomics (referred to as spatial epigenomics). With recent advances in super-resolution microscopy, the higher-order chromatin structure can now be visualized in vivo at an unprecedent resolution. This opens up new opportunities to study physical compaction of 3D chromatin structure in single cells, maintaining a well-preserved spatial context of tissue microenvironment. This review discusses the recent application of super-resolution fluorescence microscopy to investigate the higher-order chromatin structure of different epigenomic states. We also envision the synergistic integration of super-resolution microscopy and high-throughput genomic technologies for the analysis of spatial epigenomics to fully understand the genome function in normal biological processes and diseases.

摘要

真核细胞中的基因组 DNA 与组蛋白紧密结合形成核小体,核小体进一步包装成更高级的染色质结构。染色质的物理结构高度动态,并通过大量的表观遗传修饰来调节,以响应各种环境暴露,包括正常发育和衰老、癌症等病理过程。传统的细胞群体批量生化分析可以间接推断高级染色质结构,但无法直接可视化表观基因组学的空间信息(称为空间表观基因组学)。随着超分辨率显微镜技术的最新进展,现在可以以前所未有的分辨率在体内可视化高级染色质结构。这为研究单细胞中 3D 染色质结构的物理压缩提供了新的机会,同时保持了组织微环境空间背景的良好保存。本文讨论了超分辨率荧光显微镜在研究不同表观遗传状态的高级染色质结构中的最新应用。我们还设想将超分辨率显微镜和高通量基因组技术的协同整合用于空间表观基因组学分析,以充分了解正常生物学过程和疾病中的基因组功能。

相似文献

1
A guide to visualizing the spatial epigenome with super-resolution microscopy.
FEBS J. 2019 Aug;286(16):3095-3109. doi: 10.1111/febs.14938. Epub 2019 Jun 5.
2
Advanced microscopy methods for visualizing chromatin structure.
FEBS Lett. 2015 Oct 7;589(20 Pt A):3023-30. doi: 10.1016/j.febslet.2015.04.012. Epub 2015 Apr 17.
4
Decoding the plant genome: From epigenome to 3D organization.
J Genet Genomics. 2020 Aug;47(8):425-435. doi: 10.1016/j.jgg.2020.06.007. Epub 2020 Aug 8.
6
Chromatin higher-order structures and gene regulation.
Curr Opin Genet Dev. 2011 Apr;21(2):175-86. doi: 10.1016/j.gde.2011.01.022. Epub 2011 Feb 20.
7
Studying Chromatin Epigenetics with Fluorescence Microscopy.
Int J Mol Sci. 2022 Aug 12;23(16):8988. doi: 10.3390/ijms23168988.
10
The role of DNA methylation in directing the functional organization of the cancer epigenome.
Genome Res. 2015 Apr;25(4):467-77. doi: 10.1101/gr.183368.114. Epub 2015 Mar 6.

引用本文的文献

1
Application of Spatial Omics in the Cardiovascular System.
Research (Wash D C). 2025 Mar 8;8:0628. doi: 10.34133/research.0628. eCollection 2025.
2
3
A chromEM-staining protocol optimized for cardiac tissue.
Front Cell Dev Biol. 2023 Jul 5;11:1123114. doi: 10.3389/fcell.2023.1123114. eCollection 2023.
4
Methods and applications for single-cell and spatial multi-omics.
Nat Rev Genet. 2023 Aug;24(8):494-515. doi: 10.1038/s41576-023-00580-2. Epub 2023 Mar 2.
5
Studying Chromatin Epigenetics with Fluorescence Microscopy.
Int J Mol Sci. 2022 Aug 12;23(16):8988. doi: 10.3390/ijms23168988.
6
Expansion microscopy allows high resolution single cell analysis of epigenetic readers.
Nucleic Acids Res. 2022 Sep 23;50(17):e100. doi: 10.1093/nar/gkac521.
7
FISH Going Meso-Scale: A Microscopic Search for Chromatin Domains.
Front Cell Dev Biol. 2021 Nov 3;9:753097. doi: 10.3389/fcell.2021.753097. eCollection 2021.
8
Fluorescence lifetime imaging for studying DNA compaction and gene activities.
Light Sci Appl. 2021 Nov 2;10(1):224. doi: 10.1038/s41377-021-00664-w.
9
Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure.
Chromosome Res. 2021 Mar;29(1):19-36. doi: 10.1007/s10577-021-09654-5. Epub 2021 Mar 9.
10
Ground state depletion microscopy as a tool for studying microglia-synapse interactions.
J Neurosci Res. 2021 Jun;99(6):1515-1532. doi: 10.1002/jnr.24819. Epub 2021 Mar 7.

本文引用的文献

1
Extensive Heterogeneity and Intrinsic Variation in Spatial Genome Organization.
Cell. 2019 Mar 7;176(6):1502-1515.e10. doi: 10.1016/j.cell.2019.01.020. Epub 2019 Feb 21.
2
Multiplex chromatin interactions with single-molecule precision.
Nature. 2019 Feb;566(7745):558-562. doi: 10.1038/s41586-019-0949-1. Epub 2019 Feb 18.
3
Clinical epigenetics: seizing opportunities for translation.
Nat Rev Genet. 2019 Feb;20(2):109-127. doi: 10.1038/s41576-018-0074-2.
4
Chromatin imaging and new technologies for imaging the nucleome.
Wiley Interdiscip Rev Syst Biol Med. 2019 May;11(3):e1442. doi: 10.1002/wsbm.1442. Epub 2018 Nov 19.
6
Nanometer-scale Multiplexed Super-Resolution Imaging with an Economic 3D-DNA-PAINT Microscope.
Chemphyschem. 2018 Nov 19;19(22):3024-3034. doi: 10.1002/cphc.201800630. Epub 2018 Oct 8.
7
Visualizing and discovering cellular structures with super-resolution microscopy.
Science. 2018 Aug 31;361(6405):880-887. doi: 10.1126/science.aau1044. Epub 2018 Aug 30.
8
High-resolution visualization of H3 variants during replication reveals their controlled recycling.
Nat Commun. 2018 Aug 9;9(1):3181. doi: 10.1038/s41467-018-05697-1.
10
X10 expansion microscopy enables 25-nm resolution on conventional microscopes.
EMBO Rep. 2018 Sep;19(9). doi: 10.15252/embr.201845836. Epub 2018 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验