Suppr超能文献

利用超快分子动力学模拟进行从头蛋白质结构预测。

De novo protein structure prediction using ultra-fast molecular dynamics simulation.

机构信息

Department of Brain and Cognitive Science, DGIST, Daegu, South Korea.

Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS One. 2018 Nov 20;13(11):e0205819. doi: 10.1371/journal.pone.0205819. eCollection 2018.

Abstract

Modern genomics sequencing techniques have provided a massive amount of protein sequences, but experimental endeavor in determining protein structures is largely lagging far behind the vast and unexplored sequences. Apparently, computational biology is playing a more important role in protein structure prediction than ever. Here, we present a system of de novo predictor, termed NiDelta, building on a deep convolutional neural network and statistical potential enabling molecular dynamics simulation for modeling protein tertiary structure. Combining with evolutionary-based residue-contacts, the presented predictor can predict the tertiary structures of a number of target proteins with remarkable accuracy. The proposed approach is demonstrated by calculations on a set of eighteen large proteins from different fold classes. The results show that the ultra-fast molecular dynamics simulation could dramatically reduce the gap between the sequence and its structure at atom level, and it could also present high efficiency in protein structure determination if sparse experimental data is available.

摘要

现代基因组学测序技术提供了大量的蛋白质序列,但实验确定蛋白质结构的努力远远落后于广阔而未探索的序列。显然,计算生物学在蛋白质结构预测中的作用比以往任何时候都更加重要。在这里,我们提出了一种从头预测器系统,称为 NiDelta,它建立在深度卷积神经网络和统计势的基础上,能够进行分子动力学模拟,以模拟蛋白质的三级结构。结合基于进化的残基接触,所提出的预测器可以以显著的精度预测许多目标蛋白质的三级结构。该方法通过对来自不同折叠类别的 18 个大蛋白质的计算进行了验证。结果表明,超快分子动力学模拟可以在原子水平上大大缩小序列与其结构之间的差距,如果有稀疏的实验数据,它也可以在蛋白质结构确定方面表现出高效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79e6/6245515/858436412d44/pone.0205819.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验