Suppr超能文献

利用高维电子健康记录数据预测医院再入院时的急性肾损伤。

Predicting acute kidney injury at hospital re-entry using high-dimensional electronic health record data.

机构信息

Rochester Center for Health Informatics, University of Rochester Medical Center, Rochester, NY, United States of America.

Clinical Translational Science Institute, University of Rochester Medical Center, Rochester, NY, United States of America.

出版信息

PLoS One. 2018 Nov 20;13(11):e0204920. doi: 10.1371/journal.pone.0204920. eCollection 2018.

Abstract

Acute Kidney Injury (AKI), a sudden decline in kidney function, is associated with increased mortality, morbidity, length of stay, and hospital cost. Since AKI is sometimes preventable, there is great interest in prediction. Most existing studies consider all patients and therefore restrict to features available in the first hours of hospitalization. Here, the focus is instead on rehospitalized patients, a cohort in which rich longitudinal features from prior hospitalizations can be analyzed. Our objective is to provide a risk score directly at hospital re-entry. Gradient boosting, penalized logistic regression (with and without stability selection), and a recurrent neural network are trained on two years of adult inpatient EHR data (3,387 attributes for 34,505 patients who generated 90,013 training samples with 5,618 cases and 84,395 controls). Predictions are internally evaluated with 50 iterations of 5-fold grouped cross-validation with special emphasis on calibration, an analysis of which is performed at the patient as well as hospitalization level. Error is assessed with respect to diagnosis, race, age, gender, AKI identification method, and hospital utilization. In an additional experiment, the regularization penalty is severely increased to induce parsimony and interpretability. Predictors identified for rehospitalized patients are also reported with a special analysis of medications that might be modifiable risk factors. Insights from this study might be used to construct a predictive tool for AKI in rehospitalized patients. An accurate estimate of AKI risk at hospital entry might serve as a prior for an admitting provider or another predictive algorithm.

摘要

急性肾损伤 (AKI) 是一种肾功能突然下降的疾病,与死亡率、发病率、住院时间和住院费用增加有关。由于 AKI 有时是可以预防的,因此人们对其预测方法非常感兴趣。大多数现有研究都考虑了所有患者,因此只限于住院后最初几小时内可用的特征。在这里,我们的关注点是再入院患者,这是一个可以分析先前住院期间丰富的纵向特征的队列。我们的目标是在患者再次入院时提供直接的风险评分。梯度提升、惩罚逻辑回归(有和没有稳定性选择)和递归神经网络在两年的成人住院电子病历数据上进行训练(34505 名患者的 3387 个属性,产生了 90013 个训练样本,其中 5618 个病例和 84395 个对照)。通过 50 次 5 折分组交叉验证的 50 次迭代对预测进行内部评估,特别强调校准,对患者和住院治疗水平进行分析。误差通过诊断、种族、年龄、性别、AKI 识别方法和医院利用情况进行评估。在额外的实验中,严重增加正则化惩罚以诱导简约性和可解释性。还报告了再入院患者的预测因素,特别分析了可能是可修改的风险因素的药物。本研究的结果可能用于构建再入院患者 AKI 的预测工具。在入院时对 AKI 风险进行准确估计,可能为入院提供者或另一个预测算法提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e279/6245516/45b72b8e3c1e/pone.0204920.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验