Suppr超能文献

用于脓毒症早期预警的重要参数组合的性能有效性——一项使用机器学习的详尽研究

Performance effectiveness of vital parameter combinations for early warning of sepsis-an exhaustive study using machine learning.

作者信息

Rangan Ekanath Srihari, Pathinarupothi Rahul Krishnan, Anand Kanwaljeet J S, Snyder Michael P

机构信息

Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.

Center for Wireless Networks & Applications, School of Engineering, Amrita University, Amritapuri, India.

出版信息

JAMIA Open. 2022 Oct 14;5(4):ooac080. doi: 10.1093/jamiaopen/ooac080. eCollection 2022 Dec.

Abstract

OBJECTIVE

To carry out exhaustive data-driven computations for the performance of noninvasive vital signs heart rate (HR), respiratory rate (RR), peripheral oxygen saturation (SpO), and temperature (Temp), considered both independently and in all possible combinations, for early detection of sepsis.

MATERIALS AND METHODS

By extracting features interpretable by clinicians, we applied Gradient Boosted Decision Tree machine learning on a dataset of 2630 patients to build 240 models. Validation was performed on a geographically distinct dataset. Relative to onset, predictions were clocked as per 16 pairs of monitoring intervals and prediction times, and the outcomes were ranked.

RESULTS

The combination of HR and Temp was found to be a minimal feature set yielding maximal predictability with area under receiver operating curve 0.94, sensitivity of 0.85, and specificity of 0.90. Whereas HR and RR each directly enhance prediction, the effects of SpO and Temp are significant only when combined with HR or RR. In benchmarking relative to standard methods Systemic Inflammatory Response Syndrome (SIRS), National Early Warning Score (NEWS), and quick-Sequential Organ Failure Assessment (qSOFA), Vital-SEP outperformed all 3 of them.

CONCLUSION

It can be concluded that using intensive care unit data even 2 vital signs are adequate to predict sepsis upto 6 h in advance with promising accuracy comparable to standard scoring methods and other sepsis predictive tools reported in literature. Vital-SEP can be used for fast-track prediction especially in limited resource hospital settings where laboratory based hematologic or biochemical assays may be unavailable, inaccurate, or entail clinically inordinate delays. A prospective study is essential to determine the clinical impact of the proposed sepsis prediction model and evaluate other outcomes such as mortality and duration of hospital stay.

摘要

目的

对非侵入性生命体征心率(HR)、呼吸频率(RR)、外周血氧饱和度(SpO)和体温(Temp)进行详尽的数据驱动计算,分别独立以及考虑所有可能的组合情况,以实现脓毒症的早期检测。

材料与方法

通过提取临床医生可解读的特征,我们将梯度提升决策树机器学习应用于2630例患者的数据集,构建了240个模型。在地理位置不同的数据集上进行验证。相对于发病时间,根据16对监测间隔和预测时间记录预测情况,并对结果进行排名。

结果

发现HR和Temp的组合是一个最小特征集,在受试者工作特征曲线下面积为0.94、灵敏度为0.85、特异性为0.90时产生最大可预测性。虽然HR和RR各自直接增强预测,但SpO和Temp的影响仅在与HR或RR组合时才显著。在相对于标准方法全身炎症反应综合征(SIRS)、国家早期预警评分(NEWS)和快速序贯器官衰竭评估(qSOFA)的基准测试中,Vital-SEP的表现优于所有这三种方法。

结论

可以得出结论,即使仅使用重症监护病房数据中的2种生命体征,也足以提前6小时预测脓毒症,其准确性有望与文献中报道的标准评分方法和其他脓毒症预测工具相媲美。Vital-SEP可用于快速预测,特别是在资源有限的医院环境中,那里可能无法进行基于实验室的血液学或生化检测,检测结果不准确,或者会导致临床上的过度延迟。一项前瞻性研究对于确定所提出的脓毒症预测模型的临床影响以及评估其他结果(如死亡率和住院时间)至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3da/9566305/53a39b1875d6/ooac080f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验