National Research Center for Dementia, Gwangju, Republic of Korea.
Department of Software, Gachon University, 1342 Seongnamdaero, Sujeonggu, Seongnam, Gyeonggido 13120, Republic of Korea.
J Healthc Eng. 2017;2017:5485080. doi: 10.1155/2017/5485080. Epub 2017 Jun 18.
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder that attacks neurotransmitters, brain cells, and nerves, affecting brain functions, memory, and behaviors and then finally causing dementia on elderly people. Despite its significance, there is currently no cure for it. However, there are medicines available on prescription that can help delay the progress of the condition. Thus, early diagnosis of AD is essential for patient care and relevant researches. Major challenges in proper diagnosis of AD using existing classification schemes are the availability of a smaller number of training samples and the larger number of possible feature representations. In this paper, we present and compare AD diagnosis approaches using structural magnetic resonance (sMR) images to discriminate AD, mild cognitive impairment (MCI), and healthy control (HC) subjects using a support vector machine (SVM), an import vector machine (IVM), and a regularized extreme learning machine (RELM). The greedy score-based feature selection technique is employed to select important feature vectors. In addition, a kernel-based discriminative approach is adopted to deal with complex data distributions. We compare the performance of these classifiers for volumetric sMR image data from Alzheimer's disease neuroimaging initiative (ADNI) datasets. Experiments on the ADNI datasets showed that RELM with the feature selection approach can significantly improve classification accuracy of AD from MCI and HC subjects.
阿尔茨海默病(AD)是一种进行性、神经退行性脑疾病,攻击神经递质、脑细胞和神经,影响大脑功能、记忆和行为,最终导致老年人痴呆。尽管它很重要,但目前尚无治愈方法。然而,有一些处方药物可以帮助延缓病情的发展。因此,早期诊断 AD 对于患者护理和相关研究至关重要。使用现有的分类方案进行适当 AD 诊断的主要挑战是训练样本数量较少,可能的特征表示数量较多。在本文中,我们提出并比较了使用结构磁共振(sMR)图像的 AD 诊断方法,使用支持向量机(SVM)、导入向量机(IVM)和正则化极限学习机(RELM)来区分 AD、轻度认知障碍(MCI)和健康对照(HC)受试者。采用基于贪婪评分的特征选择技术选择重要特征向量。此外,还采用基于核的判别方法来处理复杂的数据分布。我们比较了这些分类器在来自阿尔茨海默病神经影像学倡议(ADNI)数据集的体积 sMR 图像数据上的性能。ADNI 数据集上的实验表明,使用特征选择方法的 RELM 可以显著提高 AD 从 MCI 和 HC 受试者中的分类准确性。