Institut de Systématique, Évolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Ecole Pratique des Hautes Etudes, 16 rue Buffon, CP39, 75005, Paris, France.
EPHE, PSL Research University, Paris, France.
Heredity (Edinb). 2019 Jun;122(6):759-769. doi: 10.1038/s41437-018-0164-0. Epub 2018 Nov 21.
The evolutionary history of species is a dynamic process as they modify, expand, and contract their spatial distributions over time. Range expansions (REs) occur through a series of founder events that are followed by migration among neighboring demes. The process usually results in structured metapopulations and leaves a distinct signature in the genetic variability of species. Explicitly modeling the consequences of complex demographic events such as REs is computationally very intensive. Here we propose an an alternative approach that requires less computational effort than a comprehensive RE model, but that can recover the demography of species undergoing a RE, by combining spatially explicit modelling with simplified but realistic metapopulation models. We examine the demographic and colonization history of Carcharhinus melanopterus, an abundant reef-associated shark, as a test case. We first used a population genomics approach to statistically confirm the occurrence of a RE in C. melanopterus, and identify its origin in the Indo-Australian Archipelago. Spatial genetic modelling identified two waves of stepping-stone colonization: an eastward wave moving through the Pacific and a westward one moving through the Indian Ocean. We show that metapopulation models best describe the demographic history of this species and that not accounting for this may lead to incorrectly interpreting the observed genetic variation as signals of widespread population bottlenecks. Our study highlights insights that can be gained about demography by coupling metapopulation models with spatial modeling and underscores the need for cautious interpretation of population genetic data when advancing conservation priorities.
物种的进化历史是一个动态的过程,随着时间的推移,它们会改变、扩展和收缩其空间分布。范围扩张(RE)通过一系列创始事件发生,随后是相邻种群之间的迁移。这个过程通常会导致形成结构化的复合种群,并在物种的遗传变异性中留下明显的特征。明确模拟如 RE 等复杂人口事件的后果在计算上非常复杂。在这里,我们提出了一种替代方法,与全面的 RE 模型相比,这种方法需要较少的计算工作量,但通过将空间显式建模与简化但现实的复合种群模型相结合,可以恢复正在经历 RE 的物种的人口统计学。我们以 Carcharhinus melanopterus(一种丰富的珊瑚礁相关鲨鱼)为例,检验这种方法。我们首先使用种群基因组学方法从统计学上证实了 C. melanopterus 中发生了 RE,并确定了其在印度-澳大利亚群岛的起源。空间遗传建模确定了两次阶段性的殖民浪潮:向东通过太平洋的浪潮和向西通过印度洋的浪潮。我们表明,复合种群模型最能描述该物种的人口统计学历史,如果不考虑这一点,可能会错误地将观察到的遗传变异解释为广泛的种群瓶颈的信号。我们的研究强调了通过将复合种群模型与空间模型相结合可以获得有关人口统计学的见解,并强调在推进保护优先事项时,需要谨慎解释种群遗传数据。