Suppr超能文献

人口建模中的偏差影响了我们对近期分歧的理解。

Biases in Demographic Modeling Affect Our Understanding of Recent Divergence.

机构信息

Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.

Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Öregrund, Sweden.

出版信息

Mol Biol Evol. 2021 Jun 25;38(7):2967-2985. doi: 10.1093/molbev/msab047.

Abstract

Testing among competing demographic models of divergence has become an important component of evolutionary research in model and non-model organisms. However, the effect of unaccounted demographic events on model choice and parameter estimation remains largely unexplored. Using extensive simulations, we demonstrate that under realistic divergence scenarios, failure to account for population size (Ne) changes in daughter and ancestral populations leads to strong biases in divergence time estimates as well as model choice. We illustrate these issues reconstructing the recent demographic history of North Sea and Baltic Sea turbots (Scophthalmus maximus) by testing 16 isolation with migration (IM) and 16 secondary contact (SC) scenarios, modeling changes in Ne as well as the effects of linked selection and barrier loci. Failure to account for changes in Ne resulted in selecting SC models with long periods of strict isolation and divergence times preceding the formation of the Baltic Sea. In contrast, models accounting for Ne changes suggest recent (<6 kya) divergence with constant gene flow. We further show how interpreting genomic landscapes of differentiation can help discerning among competing models. For example, in the turbot data, islands of differentiation show signatures of recent selective sweeps, rather than old divergence resisting secondary introgression. The results have broad implications for the study of population divergence by highlighting the potential effects of unmodeled changes in Ne on demographic inference. Tested models should aim at representing realistic divergence scenarios for the target taxa, and extreme caution should always be exercised when interpreting results of demographic modeling.

摘要

在模型生物和非模型生物中,对具有竞争关系的分歧的人口统计学模型进行测试已成为进化研究的一个重要组成部分。然而,未被记录的人口统计学事件对模型选择和参数估计的影响在很大程度上仍未得到探索。通过广泛的模拟,我们证明,在现实的分歧情况下,如果不考虑子群体和祖先群体的种群大小(Ne)变化,会导致分歧时间估计以及模型选择产生强烈偏差。我们通过测试 16 个隔离与迁移(IM)和 16 个二次接触(SC)的情景,来重建北海和波罗的海比目鱼(Scophthalmus maximus)的最近人口历史,以此说明这些问题。我们对 Ne 的变化进行建模,同时考虑连锁选择和屏障位点的影响,从而模拟了种群大小的变化。不考虑 Ne 的变化会导致选择具有长期严格隔离和分歧时间的 SC 模型,而这些分歧时间早于波罗的海的形成。相比之下,考虑 Ne 变化的模型则表明最近(<6 kya)发生了分歧,同时伴随着持续的基因流。我们进一步展示了如何通过解释分化的基因组景观来帮助区分竞争模型。例如,在比目鱼数据中,分化的岛屿显示出近期选择清除的特征,而不是古老的分歧抵抗二次渗入。这些结果对于研究种群分歧具有广泛的意义,强调了未建模的 Ne 变化对人口统计学推断的潜在影响。测试模型应旨在代表目标分类群的现实分歧情况,并且在解释人口统计学建模结果时应始终非常谨慎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c40/8233503/2d90166e913d/msab047f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验