Suppr超能文献

虚拟集成环境作为一种先进的假肢训练平台。

Virtual Integration Environment as an Advanced Prosthetic Limb Training Platform.

作者信息

Perry Briana N, Armiger Robert S, Yu Kristin E, Alattar Ali A, Moran Courtney W, Wolde Mikias, McFarland Kayla, Pasquina Paul F, Tsao Jack W

机构信息

Walter Reed National Military Medical Center, Bethesda, MD, United States.

Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States.

出版信息

Front Neurol. 2018 Oct 17;9:785. doi: 10.3389/fneur.2018.00785. eCollection 2018.

Abstract

Despite advances in prosthetic development and neurorehabilitation, individuals with upper extremity (UE) loss continue to face functional and psychosocial challenges following amputation. Recent advanced myoelectric prostheses offer intuitive control over multiple, simultaneous degrees of motion and promise sensory feedback integration, but require complex training to effectively manipulate. We explored whether a virtual reality simulator could be used to teach dexterous prosthetic control paradigms to individuals with UE loss. Thirteen active-duty military personnel with UE loss (14 limbs) completed twenty, 30-min passive motor training sessions over 1-2 months. Participants were asked to follow the motions of a virtual avatar using residual and phantom limbs, and electrical activity from the residual limb was recorded using surface electromyography. Eight participants (nine limbs), also completed twenty, 30-min active motor training sessions. Participants controlled a virtual avatar through three motion sets of increasing complexity (Basic, Advanced, and Digit) and were scored on how accurately they performed requested motions. Score trajectory was assessed as a function of time using longitudinal mixed effects linear regression. Mean classification accuracy for passive motor training was 43.8 ± 10.7% (14 limbs, 277 passive sessions). In active motor sessions, >95% classification accuracy (which we used as the threshold for prosthetic acceptance) was achieved by all participants for Basic sets and by 50% of participants in Advanced and Digit sets. Significant improvement in active motor scores over time was observed in Basic and Advanced sets (per additional session: β-coefficient 0.125, = 0.022; β-coefficient 0.45, = 0.001, respectively), and trended toward significance for Digit sets (β-coefficient 0.594, = 0.077). These results offer robust evidence that a virtual reality training platform can be used to quickly and efficiently train individuals with UE loss to operate advanced prosthetic control paradigms. Participants can be trained to generate muscle contraction patterns in residual limbs that are interpreted with high accuracy by computer software as distinct active motion commands. These results support the potential viability of advanced myoelectric prostheses relying on pattern recognition feedback or similar controls systems.

摘要

尽管在假肢开发和神经康复方面取得了进展,但上肢缺失的个体在截肢后仍面临功能和心理社会方面的挑战。最近的先进肌电假肢提供了对多个同时进行的运动程度的直观控制,并有望实现感觉反馈整合,但需要复杂的训练才能有效操作。我们探讨了虚拟现实模拟器是否可用于向肢体缺失的个体教授灵巧的假肢控制范例。13名上肢缺失的现役军人(14条肢体)在1 - 2个月内完成了20次、每次30分钟的被动运动训练课程。参与者被要求使用残肢和幻肢跟随虚拟化身的动作,并使用表面肌电图记录残肢的电活动。8名参与者(9条肢体)也完成了20次、每次30分钟的主动运动训练课程。参与者通过三组复杂度不断增加的动作(基础、进阶和手指动作)来控制虚拟化身,并根据他们执行所需动作的准确性进行评分。使用纵向混合效应线性回归评估得分轨迹随时间的变化。被动运动训练的平均分类准确率为43.8±10.7%(14条肢体,277次被动训练课程)。在主动运动课程中,所有参与者在基础动作组中均达到了>95%的分类准确率(我们将其用作假肢接受的阈值),在进阶动作组和手指动作组中,50%的参与者达到了该准确率。在基础动作组和进阶动作组中,观察到主动运动得分随时间有显著提高(每增加一次课程:β系数分别为0.125,P = 0.022;β系数为0.45,P = 0.001),手指动作组有显著提高的趋势(β系数为0.594,P = 0.077)。这些结果提供了有力证据,表明虚拟现实训练平台可用于快速有效地训练上肢缺失的个体操作先进的假肢控制范例。可以训练参与者在残肢中产生肌肉收缩模式,计算机软件能够将其高精度地解释为不同的主动运动指令。这些结果支持了依赖模式识别反馈或类似控制系统的先进肌电假肢的潜在可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cc5/6232892/eae3cb0ff697/fneur-09-00785-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验