German Cancer Research Center, 69120 Heidelberg, Germany.
Department of Medical Biochemistry and Biophysics, Umeå University, SE-901 87 Umea, Sweden.
Proc Natl Acad Sci U S A. 2017 May 30;114(22):E4442-E4451. doi: 10.1073/pnas.1618714114. Epub 2017 Apr 17.
Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (, , and ) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.
真核生物 DNA 复制的保真度依赖于 DNA 聚合酶核苷酸选择性、校对活性和 DNA 错配修复 (MMR) 的协同作用。核苷酸选择性和校对受脱氧核糖核苷酸 (dNTP) 池的平衡和浓度影响,而 dNTP 池由核糖核苷酸还原酶 (RNR) 严格调控。防止 DNA 聚合酶校对活性或 MMR 功能的突变会导致突变体表型,并因此增加癌症易感性。为了鉴定以前与高保真 DNA 复制无关的基因,我们使用 DNA 聚合酶活性位点突变体作为“敏感突变体背景”在 中进行了全基因组筛选。在我们的筛选中鉴定的基因中,有三个与代谢相关的基因( , ,和 )以前与抑制突变无关。转录因子 Gln3 的缺失或 CTP 合成酶 Ura7 的失活都导致了 DNA 损伤反应和 dNTP 池失衡。重要的是,这些 dNTP 失衡在 DNA 聚合酶功能或 MMR 活性部分受损的遗传背景下具有很强的诱变作用。以前的报告表明,dNTP 池失衡可由改变 dNTP 生物合成酶(例如 RNR 或 dCMP 脱氨酶)变构调节的突变引起。在这里,我们提供的证据表明,影响 RNR 底物产生的基因的突变会导致 dNTP 失衡,这不能通过 RNR 或其他酶活性来补偿。此外,Gln3 失活将营养剥夺与增加的诱变联系起来。我们的结果表明,类似的遗传相互作用可能导致癌细胞中的突变体表型。