Suppr超能文献

基因组脱氧木酮糖磷酸还原异构酶(DXR)突变赋予大肠杆菌对抗疟药物磷霉素的抗性。

Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli.

作者信息

Pines Gur, Oh Eun Joong, Bassalo Marcelo C, Choudhury Alaksh, Garst Andrew D, Fankhauser Reilly G, Eckert Carrie A, Gill Ryan T

机构信息

Renewable and Sustainable Energy Institute , University of Colorado Boulder , 027 UCB , Boulder , Colorado 80309 , United States.

Department of Chemical and Biological Engineering , University of Colorado Boulder , 596 UCB , Boulder , Colorado 80309 , United States.

出版信息

ACS Synth Biol. 2018 Dec 21;7(12):2824-2832. doi: 10.1021/acssynbio.8b00219. Epub 2018 Dec 7.

Abstract

Sequence to activity mapping technologies are rapidly developing, enabling the generation and isolation of mutations conferring novel phenotypes. Here we used the CRISPR enabled trackable genome engineering (CREATE) technology to investigate the inhibition of the essential ispC gene in its native genomic context in Escherichia coli. We created a full saturation library of 33 sites proximal to the ligand binding pocket and challenged this library with the antimalarial drug fosmidomycin, which targets the ispC gene product, DXR. This selection is especially challenging since it is relatively weak in E. coli, with multiple naturally occurring pathways for resistance. We identified several previously unreported mutations that confer fosmidomycin resistance, in highly conserved sites that also exist in pathogens including the malaria-inducing Plasmodium falciparum. This approach may have implications for the isolation of resistance-conferring mutations and may affect the design of future generations of fosmidomycin-based drugs.

摘要

序列到活性映射技术正在迅速发展,能够产生和分离赋予新表型的突变。在这里,我们使用了基于CRISPR的可追踪基因组工程(CREATE)技术,在大肠杆菌的天然基因组环境中研究必需基因ispC的抑制作用。我们在配体结合口袋附近创建了一个包含33个位点的完全饱和文库,并用靶向ispC基因产物DXR的抗疟药物磷霉素对该文库进行筛选。这种筛选尤其具有挑战性,因为它在大肠杆菌中的作用相对较弱,且存在多种天然的抗性途径。我们在高度保守的位点上鉴定出了几个以前未报道的赋予磷霉素抗性的突变,这些位点在包括引发疟疾的恶性疟原虫在内的病原体中也存在。这种方法可能对分离赋予抗性的突变有影响,并且可能会影响下一代基于磷霉素的药物设计。

相似文献

1
Genomic Deoxyxylulose Phosphate Reductoisomerase (DXR) Mutations Conferring Resistance to the Antimalarial Drug Fosmidomycin in E. coli.
ACS Synth Biol. 2018 Dec 21;7(12):2824-2832. doi: 10.1021/acssynbio.8b00219. Epub 2018 Dec 7.
2
A second target of the antimalarial and antibacterial agent fosmidomycin revealed by cellular metabolic profiling.
Biochemistry. 2011 May 3;50(17):3570-7. doi: 10.1021/bi200113y. Epub 2011 Apr 11.
7
Double ester prodrugs of FR900098 display enhanced in-vitro antimalarial activity.
Arch Pharm (Weinheim). 2007 Dec;340(12):667-9. doi: 10.1002/ardp.200700069.
8
Structure of 1-deoxy-D-xylulose 5-phosphate reductoisomerase in a quaternary complex with a magnesium ion, NADPH and the antimalarial drug fosmidomycin.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Jun 1;63(Pt 6):466-70. doi: 10.1107/S1744309107024475. Epub 2007 May 31.
10
Binding modes of reverse fosmidomycin analogs toward the antimalarial target IspC.
J Med Chem. 2014 Nov 13;57(21):8827-38. doi: 10.1021/jm500850y. Epub 2014 Oct 20.

引用本文的文献

1
Enzymatic Synthesis of Biologically Active -Phosphinic Analogue of α-Ketoglutarate.
Biomolecules. 2024 Dec 10;14(12):1574. doi: 10.3390/biom14121574.
2
Inhibition of DXR in the MEP pathway with lipophilic -alkoxyaryl FR900098 analogs.
RSC Med Chem. 2024 May 22;15(7):2422-2439. doi: 10.1039/d3md00642e. eCollection 2024 Jul 17.
3
Antibacterial Activity of Peptide Derivatives of Phosphinothricin against Multidrug-Resistant .
Molecules. 2023 Jan 27;28(3):1234. doi: 10.3390/molecules28031234.
4
Mutational fitness landscape and drug resistance.
Curr Opin Struct Biol. 2023 Feb;78:102525. doi: 10.1016/j.sbi.2022.102525. Epub 2023 Jan 6.
5
Highly efficient libraries design for saturation mutagenesis.
Synth Biol (Oxf). 2022 Apr 28;7(1):ysac006. doi: 10.1093/synbio/ysac006. eCollection 2022.
7
Antimicrobial Prodrug Activation by the Staphylococcal Glyoxalase GloB.
ACS Infect Dis. 2020 Nov 13;6(11):3064-3075. doi: 10.1021/acsinfecdis.0c00582. Epub 2020 Oct 29.
8
Predicting Drug Resistance Using Deep Mutational Scanning.
Molecules. 2020 May 11;25(9):2265. doi: 10.3390/molecules25092265.

本文引用的文献

1
Dynamic Management of Codon Compression for Saturation Mutagenesis.
Methods Mol Biol. 2018;1772:171-189. doi: 10.1007/978-1-4939-7795-6_9.
2
Antibiotic Resistance.
Cell. 2018 Feb 22;172(5):1136-1136.e1. doi: 10.1016/j.cell.2018.02.018.
3
Refactoring the Genetic Code for Increased Evolvability.
mBio. 2017 Nov 14;8(6):e01654-17. doi: 10.1128/mBio.01654-17.
4
Genome-wide mapping of mutations at single-nucleotide resolution for protein, metabolic and genome engineering.
Nat Biotechnol. 2017 Jan;35(1):48-55. doi: 10.1038/nbt.3718. Epub 2016 Dec 12.
5
UniProt: the universal protein knowledgebase.
Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169. doi: 10.1093/nar/gkw1099. Epub 2016 Nov 29.
6
The Resistome: A Comprehensive Database of Escherichia coli Resistance Phenotypes.
ACS Synth Biol. 2016 Dec 16;5(12):1566-1577. doi: 10.1021/acssynbio.6b00150. Epub 2016 Aug 2.
7
Antibacterial drug discovery in the resistance era.
Nature. 2016 Jan 21;529(7586):336-43. doi: 10.1038/nature17042.
9
Isoprenoid metabolism in apicomplexan parasites.
Curr Clin Microbiol Rep. 2014 Dec 1;1(3-4):37-50. doi: 10.1007/s40588-014-0006-7.
10
Bacterial Recombineering: Genome Engineering via Phage-Based Homologous Recombination.
ACS Synth Biol. 2015 Nov 20;4(11):1176-85. doi: 10.1021/acssynbio.5b00009. Epub 2015 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验