Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA.
IAME, INSERM, Université de Paris, Paris, France.
Mol Syst Biol. 2020 Mar;16(3):e9265. doi: 10.15252/msb.20199265.
Deep mutational scanning can provide significant insights into the function of essential genes in bacteria. Here, we developed a high-throughput method for mutating essential genes of Escherichia coli in their native genetic context. We used Cas9-mediated recombineering to introduce a library of mutations, created by error-prone PCR, within a gene fragment on the genome using a single gRNA pre-validated for high efficiency. Tracking mutation frequency through deep sequencing revealed biases in the position and the number of the introduced mutations. We overcame these biases by increasing the homology arm length and blocking mismatch repair to achieve a mutation efficiency of 85% for non-essential genes and 55% for essential genes. These experiments also improved our understanding of poorly characterized recombineering process using dsDNA donors with single nucleotide changes. Finally, we applied our technology to target rpoB, the beta subunit of RNA polymerase, to study resistance against rifampicin. In a single experiment, we validate multiple biochemical and clinical observations made in the previous decades and provide insights into resistance compensation with the study of double mutants.
深度突变扫描可以为研究细菌中必需基因的功能提供重要的见解。在这里,我们开发了一种高通量的方法,可以在大肠杆菌的天然遗传背景下对其必需基因进行突变。我们使用 Cas9 介导的重组酶来引入基因组上基因片段中的突变库,该突变库是通过易错 PCR 产生的,使用了一个预先验证的高效 gRNA。通过深度测序跟踪突变频率,揭示了引入突变的位置和数量的偏差。我们通过增加同源臂长度和阻断错配修复来克服这些偏差,从而实现非必需基因的突变效率为 85%,必需基因的突变效率为 55%。这些实验还加深了我们对使用具有单核苷酸变化的 dsDNA 供体进行的重组酶过程的理解。最后,我们将我们的技术应用于靶向 RNA 聚合酶的β亚基 rpoB,以研究对利福平的抗性。在单个实验中,我们验证了过去几十年中做出的多个生化和临床观察,并通过研究双突变体深入了解了抗性补偿。