Suppr超能文献

基于潜在部分多视图表征学习的婴儿大脑发育预测

INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING.

作者信息

Zhang Changqing, Adeli Ehsan, Wu Zhengwang, Li Gang, Lin Weili, Shen Dinggang

机构信息

Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina, USA.

School of Computer Science and Technology, Tianjin University, Tianjin, China.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1048-1051. doi: 10.1109/ISBI.2018.8363751. Epub 2018 May 24.

Abstract

The early postnatal period witnesses rapid and dynamic brain development. Understanding the cognitive development patterns can help identify various disorders at early ages of life and is essential for the health and well-being of children. This inspires us to investigate the relation between cognitive ability and the cerebral cortex by exploiting brain images in a longitudinal study. Specifically, we aim to predict the infant brain development status based on the morphological features of the cerebral cortex. For this goal, we introduce a learning approach to dexterously explore complementary information from different time points and handle the missing data simultaneously. Specifically, we establish a novel model termed as . The approach regards data of different time points as different views, and constructs a latent representation to capture the complementary underlying information from different and even incomplete time points. It uncovers the latent representation that can be jointly used to learn the prediction model. This formulation elegantly explores the complementarity, effectively reduces the redundancy of different views, and improves the accuracy of prediction. The minimization problem is solved by the Alternating Direction Method of Multipliers (ADMM). Experimental results on real data validate the proposed method.

摘要

出生后的早期阶段,大脑会经历快速且动态的发育。了解认知发展模式有助于在生命早期识别各种疾病,对儿童的健康和幸福至关重要。这激发我们在一项纵向研究中,通过利用脑图像来探究认知能力与大脑皮层之间的关系。具体而言,我们旨在基于大脑皮层的形态特征预测婴儿大脑发育状况。为实现这一目标,我们引入一种学习方法,巧妙地从不同时间点探索互补信息,并同时处理缺失数据。具体来说,我们建立了一个名为 的新型模型。该方法将不同时间点的数据视为不同视角,并构建一个潜在表示,以从不同甚至不完整的时间点捕获互补的潜在信息。它揭示了可共同用于学习预测模型的潜在表示。这种公式化巧妙地探索了互补性,有效减少了不同视角的冗余,并提高了预测准确性。最小化问题通过交替方向乘子法(ADMM)解决。真实数据的实验结果验证了所提出的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba17/6242279/0a88212c729e/nihms969930f1.jpg

相似文献

1
INFANT BRAIN DEVELOPMENT PREDICTION WITH LATENT PARTIAL MULTI-VIEW REPRESENTATION LEARNING.基于潜在部分多视图表征学习的婴儿大脑发育预测
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1048-1051. doi: 10.1109/ISBI.2018.8363751. Epub 2018 May 24.
4
Generalized Latent Multi-View Subspace Clustering.广义潜在多视图子空间聚类
IEEE Trans Pattern Anal Mach Intell. 2020 Jan;42(1):86-99. doi: 10.1109/TPAMI.2018.2877660. Epub 2018 Oct 23.
5
Adaptive latent similarity learning for multi-view clustering.多视图聚类的自适应潜在相似性学习。
Neural Netw. 2020 Jan;121:409-418. doi: 10.1016/j.neunet.2019.09.013. Epub 2019 Oct 3.
6
Deep Partial Multi-View Learning.深度部分多视图学习
IEEE Trans Pattern Anal Mach Intell. 2022 May;44(5):2402-2415. doi: 10.1109/TPAMI.2020.3037734. Epub 2022 Apr 1.
9
Multiview Latent Space Learning With Feature Redundancy Minimization.多视图潜在空间学习与特征冗余最小化。
IEEE Trans Cybern. 2020 Apr;50(4):1655-1668. doi: 10.1109/TCYB.2018.2883673. Epub 2018 Dec 14.
10
Improved multi-view privileged support vector machine.改进的多视角特权支持向量机。
Neural Netw. 2018 Oct;106:96-109. doi: 10.1016/j.neunet.2018.06.017. Epub 2018 Jul 23.

本文引用的文献

5
Cortical connectivity and sensory coding.皮层连接与感觉编码。
Nature. 2013 Nov 7;503(7474):51-8. doi: 10.1038/nature12654.
7
FreeSurfer.FreeSurfer。
Neuroimage. 2012 Aug 15;62(2):774-81. doi: 10.1016/j.neuroimage.2012.01.021. Epub 2012 Jan 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验