NCI 图像数据共享中的多样化癌症放射学数据集的 AI 生成注释。
AI-Generated Annotations Dataset for Diverse Cancer Radiology Collections in NCI Image Data Commons.
机构信息
BAMF Health, Grand Rapids, MI, USA.
Yale School of Medicine, New Haven, CT, USA.
出版信息
Sci Data. 2024 Oct 23;11(1):1165. doi: 10.1038/s41597-024-03977-8.
The National Cancer Institute (NCI) Image Data Commons (IDC) offers publicly available cancer radiology collections for cloud computing, crucial for developing advanced imaging tools and algorithms. Despite their potential, these collections are minimally annotated; only 4% of DICOM studies in collections considered in the project had existing segmentation annotations. This project increases the quantity of segmentations in various IDC collections. We produced high-quality, AI-generated imaging annotations dataset of tissues, organs, and/or cancers for 11 distinct IDC image collections. These collections contain images from a variety of modalities, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). The collections cover various body parts, such as the chest, breast, kidneys, prostate, and liver. A portion of the AI annotations were reviewed and corrected by a radiologist to assess the performance of the AI models. Both the AI's and the radiologist's annotations were encoded in conformance to the Digital Imaging and Communications in Medicine (DICOM) standard, allowing for seamless integration into the IDC collections as third-party analysis collections. All the models, images and annotations are publicly accessible.
美国国家癌症研究所 (NCI) 图像数据联合中心 (IDC) 提供公共可用的癌症放射学收藏,用于云计算,这对于开发先进的成像工具和算法至关重要。尽管这些集合具有潜力,但它们的注释很少;在项目中考虑的集合中,只有 4%的 DICOM 研究有现有的分割注释。该项目增加了各种 IDC 集合中的分割数量。我们为 11 个不同的 IDC 图像集合生成了高质量的、基于人工智能的成像注释数据集,包括组织、器官和/或癌症。这些集合包含来自多种模态的图像,包括计算机断层扫描 (CT)、磁共振成像 (MRI) 和正电子发射断层扫描 (PET)。集合涵盖了各种身体部位,如胸部、乳房、肾脏、前列腺和肝脏。一部分人工智能注释由放射科医生进行了审查和更正,以评估人工智能模型的性能。人工智能和放射科医生的注释都按照数字成像和通信医学 (DICOM) 标准进行了编码,允许无缝集成到 IDC 集合中,作为第三方分析集合。所有的模型、图像和注释都是公开可访问的。