Suppr超能文献

交互网络的边缘可交换模型

EDGE EXCHANGEABLE MODELS FOR INTERACTION NETWORKS.

作者信息

Crane Harry, Dempsey Walter

机构信息

Department of Statistics & Biostatistics, Rutgers University, 110 Frelinghuysen Avenue, Piscataway, NJ 08854, USA.

Department of Statistics, University of Michigan, 1085 S. University Ave, Ann Arbor, MI 48109, USA.

出版信息

J Am Stat Assoc. 2018;113(523):1311-1326. doi: 10.1080/01621459.2017.1341413. Epub 2018 Jun 12.

Abstract

Many modern network datasets arise from processes of interactions in a population, such as phone calls, email exchanges, co-authorships, and professional collaborations. In such interaction networks, the edges comprise the fundamental statistical units, making a framework for edge-labeled networks more appropriate for statistical analysis. In this context we initiate the study of and explore its basic statistical properties. Several theoretical and practical features make edge exchangeable models better suited to many applications in network analysis than more common vertex-centric approaches. In particular, edge exchangeable models allow for sparse structure and power law degree distributions, both of which are widely observed empirical properties that cannot be handled naturally by more conventional approaches. Our discussion culminates in the , which we identify here as the canonical family of edge exchangeable distributions. The Hollywood model is computationally tractable, admits a clear interpretation, exhibits good theoretical properties, and performs reasonably well in estimation and prediction as we demonstrate on real network datasets. As a generalization of the Hollywood model, we further identify the as a nonparametric subclass of models with a convenient stick breaking construction.

摘要

许多现代网络数据集源于群体中的交互过程,例如电话通话、电子邮件交流、共同作者关系以及专业合作。在这样的交互网络中,边构成了基本的统计单元,这使得用于边标记网络的框架更适合进行统计分析。在此背景下,我们启动了对[具体内容缺失]的研究并探索其基本统计特性。与更常见的以顶点为中心的方法相比,边可交换模型的一些理论和实际特性使其更适合网络分析中的许多应用。特别是,边可交换模型允许稀疏结构和幂律度分布,这两个都是广泛观察到的经验特性,而更传统的方法无法自然地处理这些特性。我们的讨论最终聚焦于[具体内容缺失],我们在此将其确定为边可交换分布的规范族。好莱坞模型在计算上易于处理,有清晰的解释,具有良好的理论特性,并且正如我们在真实网络数据集上所展示的那样,在估计和预测方面表现相当不错。作为好莱坞模型的推广,我们进一步将[具体内容缺失]确定为具有便利的折断棍子构造的非参数模型子类。

相似文献

1
EDGE EXCHANGEABLE MODELS FOR INTERACTION NETWORKS.交互网络的边缘可交换模型
J Am Stat Assoc. 2018;113(523):1311-1326. doi: 10.1080/01621459.2017.1341413. Epub 2018 Jun 12.
2
Hierarchical network models for exchangeable structured interaction processes.用于可交换结构化交互过程的层次网络模型。
J Am Stat Assoc. 2022;117(540):2056-2073. doi: 10.1080/01621459.2021.1896526. Epub 2021 May 10.
5
On Edge Exchangeable Random Graphs.关于边缘可交换随机图
J Stat Phys. 2018;173(3):448-484. doi: 10.1007/s10955-017-1832-9. Epub 2017 Jun 30.
6
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.

引用本文的文献

1
Hierarchical network models for exchangeable structured interaction processes.用于可交换结构化交互过程的层次网络模型。
J Am Stat Assoc. 2022;117(540):2056-2073. doi: 10.1080/01621459.2021.1896526. Epub 2021 May 10.
3
On Edge Exchangeable Random Graphs.关于边缘可交换随机图
J Stat Phys. 2018;173(3):448-484. doi: 10.1007/s10955-017-1832-9. Epub 2017 Jun 30.

本文引用的文献

1
Sparse graphs using exchangeable random measures.使用可交换随机测度的稀疏图。
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1295-1366. doi: 10.1111/rssb.12233. Epub 2017 Sep 23.
4
Stochastic blockmodels and community structure in networks.网络中的随机块模型与社区结构
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016107. doi: 10.1103/PhysRevE.83.016107. Epub 2011 Jan 21.
6
The structure of scientific collaboration networks.科学合作网络的结构
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):404-9. doi: 10.1073/pnas.98.2.404. Epub 2001 Jan 9.
7
Emergence of scaling in random networks.随机网络中幂律分布的出现。
Science. 1999 Oct 15;286(5439):509-12. doi: 10.1126/science.286.5439.509.
8
The sampling theory of selectively neutral alleles.选择性中性等位基因的抽样理论
Theor Popul Biol. 1972 Mar;3(1):87-112. doi: 10.1016/0040-5809(72)90035-4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验